【題目】如圖1,點(diǎn)A、D是拋物線上兩動(dòng)點(diǎn),點(diǎn)B、C在x軸上,且四邊形ABCD是矩形,點(diǎn)E是拋物線與y軸的交點(diǎn),連接BE交AD于點(diǎn)F,AD與y軸的交點(diǎn)為點(diǎn)G.設(shè)點(diǎn)A的橫坐標(biāo)為a(0<a<1).
(1) 若矩形ABCD的周長(zhǎng)為3.5,求a的值;
(2) 求證:不論點(diǎn)A如何運(yùn)動(dòng),∠EAD=∠ABE;
(3) 若△ABE是等腰三角形,
①求點(diǎn)A的坐標(biāo);
②如圖2,若將直線BA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)至直線l,設(shè)點(diǎn)A、C到直線l的距離分別為、,求的最大值.
圖1 圖2
【答案】(1)a=0.5;(2) 見解析; (3)( , )
【解析】試題分析:(1)由題意y軸是拋物線的對(duì)稱軸,也是矩形ABCD的對(duì)稱軸,根據(jù)矩形的周長(zhǎng)列出方程即可解決問題;
(2)如圖1中,首先構(gòu)建二次函數(shù)證明再證明四點(diǎn)共圓,即可解決問題;
(3)①觀察圖形可知當(dāng)是等腰三角形時(shí),只有在中,根據(jù) 可得求出即可解決問題.
②如圖3中,過點(diǎn)A作AM∥直線, 直線于, 直線于,延長(zhǎng) 交于.則四邊形是矩形,由推出 欲求的最大值,只要求的最大值即可,點(diǎn)與點(diǎn)重合時(shí)的值最大.
試題解析:(1)由題意軸是拋物線的對(duì)稱軸,也是矩形ABCD的對(duì)稱軸,
∴關(guān)于軸對(duì)稱,
由題意
解得或(舍去),
(2)如圖1中,
∴直線EB的解析式為
直線DE的解析式為
設(shè)BD交OE于P,
∵PG∥AB,
四點(diǎn)共圓,
= ,
(3)觀察圖形可知當(dāng)是等腰三角形時(shí),只有
在中,
解得或(舍棄),
∴點(diǎn)
②如圖3中,過點(diǎn)A作AM∥直線, 直線于, 直線于,延長(zhǎng) 交于.則四邊形是矩形,
欲求
在中,
∴當(dāng)點(diǎn)與點(diǎn)重合時(shí)的值最大,此時(shí)
的最大值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖要求:Ⅰ、過直線外一點(diǎn)作這條直線的垂線;Ⅱ、作線段的垂直平分線;
Ⅲ、過直線上一點(diǎn)作這條直線的垂線;Ⅳ、作角的平分線.
如圖是按上述要求排亂順序的尺規(guī)作圖:
則正確的配對(duì)是( 。
A. ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B. ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C. ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D. ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,射線從的位置開始繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),速度是每秒,同時(shí)射線從的位置開始繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),速度是每秒,設(shè)旋轉(zhuǎn)時(shí)間為秒.
(1)用含的代數(shù)式表示和的度數(shù);
(2)在旋轉(zhuǎn)過程中,當(dāng)等于時(shí),求的值;
(3)在旋轉(zhuǎn)過程中是否存在這樣的,使得射線恰好是圖中某個(gè)角的平分線?如果存在,請(qǐng)求出的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知直線AB的函數(shù)解析式為y=﹣2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P(m,n)為線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),作PE⊥x軸于點(diǎn)E,PF⊥y軸于點(diǎn)F,連接EF,問:
①若△PAO的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;
②是否存在點(diǎn)P,使EF的值最?若存在,求出EF的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡(jiǎn)求值:
(1)當(dāng)a=﹣1,b=2時(shí),求代數(shù)式﹣2(ab﹣3b2)﹣[6b2﹣(ab﹣a2)]的值
(2)先化簡(jiǎn),再求值:4xy﹣2(x2﹣3xy+2y2)+3(x2﹣2xy),當(dāng)(x﹣3)2+|y+1|=0,求式子的值
(3)若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的結(jié)果與x的取值無關(guān),求m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了全面提高學(xué)生的能力,學(xué)校組織課外活動(dòng)小組,并要求初一學(xué)年積極參加,初一學(xué)年共有四個(gè)班,參加的學(xué)生共有(6a﹣3b)人,其中一班有a人參加,二班參加的人數(shù)比一班參加的人數(shù)兩倍少b人,三班參加的人數(shù)比二班參加的人數(shù)一半多1人.
(1)求三班的人數(shù)(用含a,b的式子表示);
(2)求四班的人數(shù)(用含a,b的式子表示);
(3)若四個(gè)班共54人參加了課外活動(dòng),求二班比三班多多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別與軸、軸交于兩點(diǎn),正比例函數(shù)的圖象與交于點(diǎn).
(1)求點(diǎn)坐標(biāo);
(2)求的表達(dá)式;
(3)求和的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是直線AB上一點(diǎn),∠BOC<90°,三角板(MON)的直角頂點(diǎn)落在點(diǎn)O處現(xiàn)將三角板繞著點(diǎn)O旋轉(zhuǎn),并保持OM和OC在直線AB的同一側(cè).
(1)若∠BOC=50°
①當(dāng)OM平分∠BOC時(shí),求∠AON的度數(shù).
②當(dāng)OM在∠BOC內(nèi)部,且∠AON=3∠COM時(shí),求∠CON的度數(shù):
(2)當(dāng)∠COM=2∠AON時(shí),請(qǐng)畫出示意圖,猜想∠AOM與∠BOC的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年上半年撫州市各級(jí)各類中小學(xué)(含中等職業(yè)學(xué)校)開展了“萬師訪萬家”活動(dòng).某縣家訪方式有:A.上門走訪;B.電話訪問;C.網(wǎng)絡(luò)訪問(班級(jí)微信或QQ群);D.其他.該縣教育局負(fù)責(zé)人從“萬師訪萬家”平臺(tái)上隨機(jī)抽取本縣一部分老師的家訪情況,繪制了如圖所示兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息,解答下列問題:
(1)這次被抽查的家訪老師共有多少人?扇形統(tǒng)計(jì)圖中,“A”所對(duì)應(yīng)的圓心角的度數(shù)為多少?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)已知該縣共有3500位老師參與了這次“萬師訪萬家”活動(dòng),請(qǐng)估計(jì)該縣共有多少位老師采用的是上門走訪的方式進(jìn)行家訪的?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com