(2012•赤峰)投擲一枚質(zhì)地均勻的骰子兩次,兩次的點數(shù)相同的概率是
1
6
1
6
分析:首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與兩次的點數(shù)相同的情況,再利用概率公式求解即可求得答案.
解答:解:列表得:
1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
∵共有36種情況,兩次的點數(shù)相同的有6種情況,
∴兩次的點數(shù)相同的概率是:
6
36
=
1
6

故答案為:
1
6
點評:此題考查的是用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•懷化)投擲一枚普通的正方體骰子24次.
(1)你認(rèn)為下列四種說法哪種是正確的?
①出現(xiàn)1點的概率等于出現(xiàn)3點的概率;
②投擲24次,2點一定會出現(xiàn)4次;
③投擲前默念幾次“出現(xiàn)4點”,投擲結(jié)果出現(xiàn)4點的可能性就會加大;
④連續(xù)投擲6次,出現(xiàn)的點數(shù)之和不可能等于37.
(2)求出現(xiàn)5點的概率;
(3)出現(xiàn)6點大約有多少次?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)小江玩投擲飛鏢的游戲,他設(shè)計了一個如圖所示的靶子,點E、F分別是矩形ABCD的兩邊AD、BC上的點,EF∥AB,點M、N是EF上任意兩點,則投擲一次,飛鏢落在陰影部分的概率是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南安市質(zhì)檢)下列事件中為必然事件的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•赤峰)閱讀材料:
(1)對于任意兩個數(shù)a、b的大小比較,有下面的方法:
當(dāng)a-b>0時,一定有a>b;
當(dāng)a-b=0時,一定有a=b;
當(dāng)a-b<0時,一定有a<b.
反過來也成立.因此,我們把這種比較兩個數(shù)大小的方法叫做“求差法”.
(2)對于比較兩個正數(shù)a、b的大小時,我們還可以用它們的平方進(jìn)行比較:
∵a2-b2=(a+b)(a-b),a+b>0
∴(a2-b2)與(a-b)的符號相同
當(dāng)a2-b2>0時,a-b>0,得a>b
當(dāng)a2-b2=0時,a-b=0,得a=b
當(dāng)a2-b2<0時,a-b<0,得a<b
解決下列實際問題:
(1)課堂上,老師讓同學(xué)們制作幾種幾何體,張麗同學(xué)用了3張A4紙,7張B5紙;李明同學(xué)用了2張A4紙,8張B5紙.設(shè)每張A4紙的面積為x,每張B5紙的面積為y,且x>y,張麗同學(xué)的用紙總面積為W1,李明同學(xué)的用紙總面積為W2.回答下列問題:
①W1=
3x+7y
3x+7y
(用x、y的式子表示)
W2=
2x+8y
2x+8y
(用x、y的式子表示)
②請你分析誰用的紙面積最大.
(2)如圖1所示,要在燃?xì)夤艿纋上修建一個泵站,分別向A、B兩鎮(zhèn)供氣,已知A、B到l的距離分別是3km、4km(即AC=3km,BE=4km),AB=xkm,現(xiàn)設(shè)計兩種方案:

方案一:如圖2所示,AP⊥l于點P,泵站修建在點P處,該方案中管道長度a1=AB+AP.
方案二:如圖3所示,點A′與點A關(guān)于l對稱,A′B與l相交于點P,泵站修建在點P處,該方案中管道長度a2=AP+BP.
①在方案一中,a1=
(3+x)
(3+x)
km(用含x的式子表示);
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示);
③請你分析要使鋪設(shè)的輸氣管道較短,應(yīng)選擇方案一還是方案二.

查看答案和解析>>

同步練習(xí)冊答案