在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖).
(1)求邊OA在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積;
(2)旋轉(zhuǎn)過(guò)程中,當(dāng)MN和AC平行時(shí),求正方形OABC旋轉(zhuǎn)的度數(shù);
(3)設(shè)△MBN的周長(zhǎng)為p,在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值是否有變化?請(qǐng)證明你的結(jié)論.

【答案】分析:(1)根據(jù)扇形的面積公式來(lái)求得邊OA在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積;
(2)解決本題需利用全等,根據(jù)正方形一個(gè)內(nèi)角的度數(shù)求出∠AOM的度數(shù);
(3)利用全等把△MBN的各邊整理到成與正方形的邊長(zhǎng)有關(guān)的式子.
解答:解:(1)∵A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn),直線y=x與y軸的夾角是45°,
∴OA旋轉(zhuǎn)了45°.
∴OA在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積為

(2)∵M(jìn)N∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.
∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.
∴∠AOM=∠CON=(∠AOC-∠MON)=(90°-45°)=22.5°.
∴旋轉(zhuǎn)過(guò)程中,當(dāng)MN和AC平行時(shí),正方形OABC旋轉(zhuǎn)的度數(shù)為45°-22.5°=22.5°.

(3)在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值無(wú)變化.
證明:延長(zhǎng)BA交y軸于E點(diǎn),
則∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,
∴∠AOE=∠CON.
又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.
∴△OAE≌△OCN.
∴OE=ON,AE=CN.
又∵∠MOE=∠MON=45°,OM=OM,
∴△OME≌△OMN.∴MN=ME=AM+AE.
∴MN=AM+CN,
∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.
∴在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值無(wú)變化.
點(diǎn)評(píng):本題用到的知識(shí)點(diǎn)是:扇形面積=,求一些線段的長(zhǎng)度或角的度數(shù),總要整理到已知線段的長(zhǎng)度上或已知角的度數(shù)上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過(guò)A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問(wèn),考慮有沒(méi)有更簡(jiǎn)捷的解題策略?請(qǐng)說(shuō)出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,開(kāi)口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過(guò)程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過(guò)程記為【90°,2】變換.
(1)在圖中畫(huà)出所有符合要求的△A1B1C1
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過(guò)【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊(cè)答案