【題目】在中,,其中一個銳角為,,點在直線上(不與,兩點重合),當時,的長為__________.
【答案】或或4
【解析】
根據(jù)題意畫出圖形,分4種情況進行討論,利用含30°角直角三角形與勾股定理解答.
解:如圖1:
當∠C=60°時,∠ABC=30°,與∠ABP=30°矛盾;
如圖2:
當∠C=60°時,∠ABC=30°,
∵∠ABP=30°,
∴∠CBP=60°,
∴△PBC是等邊三角形,
∴;
如圖3:
當∠ABC=60°時,∠C=30°,
∵∠ABP=30°,
∴∠PBC=60°-30°=30°,
∴PC=PB,
∵,
∴,
在Rt△APB中,根據(jù)勾股定理,
即,
即,解得,
如圖4:
當∠ABC=60°時,∠C=30°,
∵∠ABP=30°,
∴∠PBC=60°+30°=90°,
∴
在Rt△BCP中,根據(jù)勾股定理,
即,解得PC=4(已舍去負值).
綜上所述,的長為或或4.
故答案為:或或4.
科目:初中數(shù)學 來源: 題型:
【題目】一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數(shù)圖形如圖所示,下列說法正確的有( )
①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h; ⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點,AC為⊙O的直徑,弦BD⊥AC下列結論:①∠P+∠D=180°;②∠COB=∠DAB;③∠DBA=∠ABP;④∠DBO=∠ABP.其中正確的只有( )
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司購買了一批、型芯片,其中型芯片的單價比型芯片的單價少9元,已知該公司用3120元購買型芯片的條數(shù)與用4200元購買型芯片的條數(shù)相等.
(1)求該公司購買的、型芯片的單價各是多少元?
(2)若兩種芯片共購買了200條,且購買的總費用為6280元,求購買了多少條型芯片?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個直徑為1m的圓形鐵皮,要從中剪出一個最大的圓心角為90°的扇形ABC,如圖所示.
(1)求被剪掉陰影部分的面積:
(2)用所留的扇形鐵皮圍成一個圓錐,該圓錐的底面圓的半徑是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠家在甲、乙兩家商場銷售同一商品所獲得的利潤分別為,(單位:元),,與銷售數(shù)量x(單位:件)的函數(shù)關系如圖所示,試根據(jù)圖象解決下列問題:
(1)分別求出,關于x的函數(shù)關系式;
(2)現(xiàn)廠家分配該商品800件給甲商場,400件給乙商場,當甲、乙商場售完這批商品后,廠家可獲得的總利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線經(jīng)過點,與軸,軸分別交于,兩點,點,
(1)求的值和直線的函數(shù)表達式;
(2)連結,當是等腰三角形時,求的值;
(3)若,點,分別在線段,線段上,當是等腰直角三角形且時,則的面積是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知將一塊直角三角板DEF放置在△ABC上,使得該三角板的兩條直角邊DE,DF恰好分別經(jīng)過點B、C.
(1)∠DBC+∠DCB= 度;
(2)過點A作直線直線MN∥DE,若∠ACD=20°,試求∠CAM的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結果繪制了如下尚不完整的統(tǒng)計圖.
治理楊絮一一您選哪一項?(單選)
A.減少楊樹新增面積,控制楊樹每年的栽種量
B.調(diào)整樹種結構,逐漸更換現(xiàn)有楊樹
C.選育無絮楊品種,并推廣種植
D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮
E.其他
根據(jù)以上統(tǒng)計圖,解答下列問題:
(1)本次接受調(diào)查的市民共有 人;
(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是 ;
(3)請補全條形統(tǒng)計圖;
(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com