【題目】恒昌路是一條東西走向的馬路,有市場、醫(yī)院、車站、學校四家公共場所。已知市場在醫(yī)院東200米,車站在市場東150米,醫(yī)院在學校東450米。若將馬路近似的看成一條直線,以醫(yī)院為原點,向東方向為正方向,用1個單位長度表示100米,

(1)在數(shù)軸上表示出四家公共場所的位置;

(2)列式計算學校與車站之間的距離.

【答案】1)見詳解;(2)學校與車站之間的距離為800.

【解析】

1)規(guī)定向東為正,注意單位長度是以100米為1個單位,畫出圖形即可;

2)根據(jù)數(shù)軸上兩點之間的距離是表示這兩點的數(shù)的差的絕對值,計算即可得到答案;

解:(1)以醫(yī)院為原點,則四家公共場所的位置如圖所示:

;

2)由(1)可知,學校為,車站為

∴學校到車站的距離為:米;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】請完成下列的相似測試.

如圖,在ABC中,AB=AC=4,DAB上一點,且BD=1,連接CD,然后作∠CDE=B,交平行于BC且過點A的直線于點E,DEAC于點F,連接CE.

(1)求證:AFD∽△EFC;

(2)試求AEBC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABE中,點A、B是反比例函數(shù)yk≠0)圖象上的兩點,點Ex軸上,延長線段ABy軸于點C,點B恰為線段AC中點,過點AADx軸于點D.若SABE,DE2OE,則k的值為( 。

A.6B.6C.9D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習概率的課堂上,老師提出問題:一口袋裝有除顏色外均相同的2個紅球1個白球和1個籃球,小剛和小明想通過摸球來決定誰去看電影,同學甲設計了如下的方案:第一次隨機從口袋中摸出一球(不放回);第二次再任意摸出一球,兩人勝負規(guī)則如下:摸到一紅一白,則小剛看電影;摸到一白一藍,則小明看電影.

1)同學甲的方案公平嗎?請用列表或畫樹狀圖的方法說明;

2)你若認為這個方案不公平,那么請你改變一下規(guī)則,設計一個公平的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,在正方形ABCD中,EAB上一點,GAD上一點,∠ECG=45°,那么EG與圖中兩條線段的和相等?證明你的結論.

(2)請用(1)中所積累的經驗和知識完成此題,如圖,在四邊形ABCG中,AG//BC(BC>AG),∠B=90°AB=BC=12,EAB上一點,且∠ECG=45°,BE=4,求EG的長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】汾河孕育著世代的龍城子孫,而魅力汾河兩岸那新外灘的稱號,將太原人對汾河的愛表露無遺貫穿太原的汾河,讓橋,也成為太原的文化符號,讓汾河兩岸,也成為繁華的必爭之地!北中環(huán)橋是世界上首座對稱五拱反對稱五跨非對稱斜拉索橋,2013年開工建設,當年實現(xiàn)全線竣工通車.這座橋造型現(xiàn)代,宛如一條騰飛巨龍.

小蕓和小剛分別在橋面上的A,B處,準備測量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測得∠CAB=36°,小剛在B處測得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59cos36°≈0.81,tan36°≈0.73,sin43°≈0.68cos43°≈0.73,tan43°≈0.93

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:大數(shù)學家高斯在上學讀書時曾經研究過這樣一個問題:1+2+3+…+100=?經過研究,這個問題的一般性結論是1+2+3+…+n=n(n+1),其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:1×2+2×3+…n(n+1)=?

觀察下面三個特殊的等式:

1×2=(1×2×3﹣0×1×2)

2×3=(2×3×4﹣1×2×3)

3×4=(3×4×5﹣2×3×4)

將這三個等式的兩邊相加,可以得到1×2+2×3+3×4=×3×4×5=20,

讀完這段材料,請你思考后回答:

(1)1×2+2×3+…+10×11=________________;

(2)1×2+2×3+3×4+…+n×(n+1)=_________________________

(3)1×2×3+2×3×4+…+n(n+1)(n+2)=______________________________

(只需寫出結果,不必寫中間的過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD,點M為邊AB的中點.

(1)如圖1,點G為線段CM上的一點,且∠AGB=90°,延長AG、BG分別與邊BC、CD交于點E、F

①求證:BE=CF;

②求證:BE2=BCCE

(2)如圖2,在邊BC上取一點E,滿足BE2=BCCE,連接AECM于點G,連接BG并延長交CD于點F,求tanCBF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(2,4),B(1,1),C(4,3).

(1)請畫出△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標;

(2)請畫出△ABC繞點B逆時針旋轉90°后的△A2BC2;

(3)求出(2)C點旋轉到C2點所經過的路徑長(結果保留根號和π);

(4)求出(2)A2BC2的面積是多少.

查看答案和解析>>

同步練習冊答案