【題目】如圖,點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長交另一分支于點(diǎn)B,以AB為底作等腰ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y=上運(yùn)動(dòng),則k的值為_____

【答案】3

【解析】分析:連接CO,過點(diǎn)AADx軸于點(diǎn)D,過點(diǎn)CCEx軸于點(diǎn)E,證明AOD∽△OCE,根據(jù)相似三角形的性質(zhì)求出AODOCE面積比,根據(jù)反比例函數(shù)圖象上點(diǎn)的特征求出SAOD,得到SEOC,求出k的值.

詳解:連接CO,過點(diǎn)AADx軸于點(diǎn)D,過點(diǎn)CCEx軸于點(diǎn)E,

∵連接AO并延長交另一分支于點(diǎn)B,以AB為底作等腰ABC,且∠ACB=120°

COAB,CAB=30°,

則∠AOD+COE=90°,

∵∠DAO+AOD=90°,

∴∠DAO=COE,

又∵∠ADO=CEO=90°,

∴△AOD∽△OCE,

=tan60°=,

,

∵點(diǎn)A是雙曲線y=-在第二象限分支上的一個(gè)動(dòng)點(diǎn),

SAOD=×|xy|=

SEOC=,即×OE×CE=

k=OE×CE=3,

故答案為:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線.

(1)求證:ADE≌△CBF;

(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的對角線相交于點(diǎn),,

1)求證:四邊形是菱形;

2)若將題設(shè)中矩形這一條件改為菱形,其余條件不變,則四邊形__________形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并解答問題:在一個(gè)三角形中,如果一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍,那么這樣的三角形我們稱為“3倍角三角形例如:一個(gè)三角形三個(gè)內(nèi)角的度數(shù)分別是,這個(gè)三角形就是一個(gè)“3倍角三角形.反之,若一個(gè)三角形是“3倍角三角形,那么這個(gè)三角形的三個(gè)內(nèi)角中一定有一個(gè)內(nèi)角的度數(shù)是另一個(gè)內(nèi)角度數(shù)的3倍.

1)如圖1,已知,在射線上取一點(diǎn),過點(diǎn)于點(diǎn).判斷是否是“3倍角三角形”,為什么?

2)在(1)的條件下,以為端點(diǎn)畫射線,交線段于點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).若“3倍角三角形”,求的度數(shù).

3)如圖2,點(diǎn)的邊上,連接,作的平分線交于點(diǎn),在上取一點(diǎn),使得,.若“3倍角三角形,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀思考

我們知道,在數(shù)軸上|a|表示數(shù)a所對應(yīng)的點(diǎn)到原點(diǎn)的距離,這是絕對值的幾何意義,由此我們可進(jìn)一步地來研究數(shù)軸上任意兩個(gè)點(diǎn)之間的距離,一般地,如果數(shù)軸上兩點(diǎn)A、B 對立的數(shù)用a,b表示,那么這兩個(gè)點(diǎn)之間的距離AB=|a﹣b|.也可以用兩點(diǎn)中右邊的點(diǎn)所表示數(shù)的減去左邊的點(diǎn)所表示的數(shù)來計(jì)算,例如:數(shù)軸上P,Q兩點(diǎn)表示的數(shù)分別是﹣1和2,那么P,Q兩點(diǎn)之間的距離就是 PQ=2﹣(﹣1)=3.

啟發(fā)應(yīng)用

如圖,點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)為a,點(diǎn)B對應(yīng)的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0

(1)求線段AB的長;

(2)如圖,點(diǎn)C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程2x+1=x﹣8的解,

①求線段BC的長;

②在數(shù)軸上是否存在點(diǎn)P使PA+PB=BC?若存在,直接寫出點(diǎn)P對應(yīng)的數(shù):若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近期,我市持續(xù)出現(xiàn)霧霾天氣,給廣大市民的工作和生活造成了嚴(yán)重的影響.為此,霧霾天氣的主要成因就成為了某校環(huán)保小組調(diào)查研究的課題,他們隨機(jī)調(diào)查了部分市民,并對調(diào)查結(jié)果進(jìn)行了整理,繪制了如圖所示的不完整的統(tǒng)計(jì)圖表.請根據(jù)圖表中提供的信息解答下列問題:

級(jí)別

觀點(diǎn)

頻數(shù)(人數(shù))

A

大氣氣壓低,空氣不流動(dòng)

B

地面灰塵大,空氣濕度低

C

汽車尾部排放

D

工廠造成污染

E

其他

調(diào)查結(jié)果扇形統(tǒng)計(jì)圖

1)填空:______,______;

2)求出扇形統(tǒng)計(jì)圖中E組所占的百分比以及扇形統(tǒng)計(jì)圖中區(qū)域D所對應(yīng)的扇形圓心角度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項(xiàng),得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯(cuò)誤變形的個(gè)數(shù)是( 。﹤(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直線相交于點(diǎn)是直角,平分

1的大小關(guān)系是 ,判斷的依據(jù)是 ;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:abc0;ba+c4a+2b+c0;2c3ba+bm am+b)(m≠1的實(shí)數(shù)).其中正確結(jié)論的有( 。

A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤

查看答案和解析>>

同步練習(xí)冊答案