如圖所示,已知矩形ABCD的兩條對(duì)角線的一個(gè)交角為120°,一條對(duì)角線與矩形較短的邊的和為18cm,求矩形的對(duì)角線及邊長(zhǎng).
分析:根據(jù)矩形的性質(zhì)推出OA=OB,證出等邊△OAB,求出BA,根據(jù)勾股定理求出BC即可得到答案.
解答:解:∵四邊形ABCD是矩形,
∴AC=BD,OA=OC,OD=OB,
∴OA=OB,
∵∠BOC=120°,
∴∠AOB=60°,
∴△AOB是等邊三角形,
∴OA=OB=AB,
∵一條對(duì)角線與矩形較短的邊的和為18cm,
∴3AB=18,
∴AB=6,
∴BD=12,
∴BC=
122-62
=6
3
點(diǎn)評(píng):本題主要考查對(duì)矩形的性質(zhì),等邊三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn)的理解和掌握,能求出AB的長(zhǎng)是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知矩形ABCD中,CD=2,AD=3,點(diǎn)P是AD上的一個(gè)動(dòng)點(diǎn)(與A、D不重合),過(guò)點(diǎn)P作PE⊥CP交直線AB于點(diǎn)E,設(shè)PD=x,AE=y,
(1)寫出y與x的函數(shù)解析式,并指出自變量的取值范圍;
(2)如果△PCD的面積是△AEP面積的4倍,求CE的長(zhǎng);
(3)是否存在點(diǎn)P,使△APE沿PE翻折后,點(diǎn)A落在BC上?證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知矩形ABCD(AD>AB)中,AB=a,∠BDA=θ,試用a與θ表示:AD=
 
,BD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某住宅小區(qū)的物業(yè)管理部門為解決住戶停車?yán)щy,將一條道路辟為停車場(chǎng),停車位置如圖所示.已知矩形ABCD是供一輛機(jī)動(dòng)車停放的車位,其中AB=5.4米,BC=2.2米,∠DCF=40°.請(qǐng)計(jì)算停車位所占道路的寬度EF(結(jié)果精確到0.1米).
參考數(shù)據(jù):sin40°≈0.64   cos40°≈0.77   tan40°≈0.84.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知矩形ABCD的邊AB=3cm,AD=4cm.
(1)以點(diǎn)A為圓心,4cm為半徑作⊙A,則點(diǎn)B,C,D與⊙A的位置關(guān)系如何?
(2)若以點(diǎn)A為圓心作⊙A,使B,C,D三點(diǎn)中至少有一個(gè)點(diǎn)在圓內(nèi),且至少有一點(diǎn)在圓外,則⊙A的半徑r的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知矩形ABCD中兩條對(duì)角線AC、BD相交于點(diǎn)O,∠ADB=30°,DF∥AC交BC的延長(zhǎng)線于F點(diǎn),
(1)判定△AOB的形狀,并說(shuō)明理由.
(3)求證:BC=CF.

查看答案和解析>>

同步練習(xí)冊(cè)答案