如圖,拋物線交軸于A、B兩點,交軸于點C,
點P是它的頂點,點A的橫坐標(biāo)是3,點B的橫坐標(biāo)是1.
(1)求、的值;
(2)求直線PC的解析式;
(3)請?zhí)骄恳渣cA為圓心、直徑為5的圓與直線PC的位置關(guān)系,并說明理由.
(參考數(shù)據(jù),,)
解析試題分析:(1)由題意知,代入A(-3,0)B(1,0)
(4分)
(2) (3分)
(3)⊙A與直線PC相交(可用相似知識,也可三角函數(shù),求得圓心A到PC的距離d與r大小比較,從而確定直線和圓的位置關(guān)系。)(3分)
考點:直線解析式
點評:先由一元二次方程的兩根關(guān)系,得出兩圓半徑之和,然后根據(jù)圓與圓的位置關(guān)系判斷條件,確定位置關(guān)系.設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內(nèi)切,則d=R-r;內(nèi)含,則d<R-r.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線交軸于A、B兩點(A點在B點左側(cè)),交軸于點C,已知B(8,0),,△ABC的面積為8.
(1)求拋物線的解析式;
(2)若動直線EF(EF∥軸)從點C開始,以每秒1個長度單位的速度沿軸負方向平移,且交軸、線段BC于E、F兩點,動點P同時從點B出發(fā),在線段OB上以每秒2個單位的速度向原點O運動。連結(jié)FP,設(shè)運動時間秒。當(dāng)為何值時,的值最大,并求出最大值;
(3)在滿足(2)的條件下,是否存在的值,使以P、B、F為頂點的三角形與△ABC相似。若存在,試求出的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆湖北省天門市十一校九年級4月聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:填空題
如圖,拋物線交軸于點,交軸于點,在軸上方的拋物線上有兩點,它們關(guān)于軸對稱,點在軸左側(cè).于點,于點,四邊形與四邊形的面積分別為6和10,則與的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市初九年級上學(xué)期第二次階段測數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,拋物線交軸于兩點(的左側(cè)),交軸于點,頂點為。
(1)求點的坐標(biāo);
(2)求四邊形的面積;
(3)拋物線上是否存在點,使得,若存在,請求出點的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年安徽省中考壓軸題預(yù)測試數(shù)學(xué)卷 題型:選擇題
如圖,拋物線交軸于A、B兩點(A點在B點左側(cè)),交軸于點C,已知B(8,0),,△ABC的面積為8.
1.求拋物線的解析式;
2.若動直線EF(EF∥軸)從點C開始,以每秒1個長度單位的速度沿軸負方向平移,且交軸、線段BC于E、F兩點,動點P同時從點B出發(fā),在線段OB上以每秒2個單位的速度向原點O運動。連結(jié)FP,設(shè)運動時間秒。當(dāng)為何值時,的值最大,并求出最大值;
3.在滿足(2)的條件下,是否存在的值,使以P、B、F為頂點的三角形與△ABC相似。若存在,試求出的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com