【題目】如圖,正方形ABCD的邊AB在數(shù)軸上,數(shù)軸上點A表示的數(shù)為-1,正方形ABCD的面積為16.
(1)數(shù)軸上點B表示的數(shù)為 ;
(2)將正方形ABCD沿數(shù)軸水平移動,移動后的正方形記為,移動后的正方形與原正方形ABCD重疊部分的面積記為S.
① 當(dāng)S =4時,畫出圖形,并求出數(shù)軸上點表示的數(shù);
② 設(shè)正方形ABCD的移動速度為每秒2個單位長度,點E為線段的中點,點F在線段上,且. 經(jīng)過秒后,點E,F所表示的數(shù)互為相反數(shù),直接寫出的值.
【答案】(1)-5;(2)– 4或2;(3)t=4.
【解析】試題分析:(1)、根據(jù)正方形的面積得出AB=4,根據(jù)點A所表示的數(shù)得出點B所表示的數(shù);(2)、①、根據(jù)題意得出矩形的一邊長為4,要使面積為4,則另一邊長為1,然后根據(jù)向左移動和向右移動兩種情況分別畫出圖形得出答案;②、用含t的代數(shù)式分別表示出點E和點F所表示的數(shù),然后根據(jù)互為相反數(shù)的兩個數(shù)的和為零列出方程得出答案.
試題解析:解:(1)、–5;
(2)、∵正方形ABCD的面積為16,∴邊長為4.
當(dāng)S=4時,①若正方形ABCD向左平移,如圖1,
重疊部分中的A'B =1,∴AA'=3.
則點A'表示–1–3= – 4.
②若正方形ABCD向右平移,如圖2,
重疊部分中的AB'=1,∴AA'=3.
則點A'表示–1+3= 2,∴點A'表示的數(shù)為– 4或2.
圖1 圖2
(3)t=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市正在進行商業(yè)街改造,商業(yè)街起點在古民居P的南偏西60°方向上的A處,現(xiàn)已改造至古民居P南偏西30°方向上的B處,A與B相距150m,且B在A的正東方向.為不破壞古民居的風(fēng)貌,按照有關(guān)規(guī)定,在古民居周圍100m以內(nèi)不得修建現(xiàn)代化商業(yè)街.若工程隊繼續(xù)向正東方向修建200m商業(yè)街到C處,則對于從B到C的商業(yè)街改造是否違反有關(guān)規(guī)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖與計算
(1)已知:.
求作:在圖2中,以OA為一邊,在∠AOB的內(nèi)部作.∠AOC=(要求:直尺和圓規(guī)作圖,不寫作法,保留圖痕跡.)
(2)過點O分別引射線OA、OB、OC,且∠AOB=65°,∠BOC=30°,求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在直角坐標系中的位置如圖所示,其中A(﹣3,5),B(﹣5,2),C(﹣1,3),直線l經(jīng)過點(0,1),并且與x軸平行,△A′B′C′與△ABC關(guān)于線1對稱.
(1)畫出△A′B′C′,并寫出△A′B′C′三個頂點的坐標: ;
(2)觀察圖中對應(yīng)點坐標之間的關(guān)系,寫出點P(a,b)關(guān)于直線l的對稱點P′的坐標: ;
(3)若直線l′經(jīng)過點(0,m),并且與x軸平行,根據(jù)上面研究的經(jīng)驗,寫出點Q(c,d)關(guān)于直線1′的對稱點Q′的坐標: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A,B的坐標分別為(-2,3)和(1,3),拋物線y=ax2+bx+c(a<0)的頂點在線段AB上運動時,形狀保持不變,且與x軸交于C,D兩點(C在D的左側(cè)),給出下列結(jié)論:①c<3;②當(dāng)x<-3時,y隨x的增大而增大;③若點D的橫坐標最大值為5,則點C的橫坐標最小值為-5;④當(dāng)四邊形ACDB為平行四邊形時,a= .其中正確的是( )
A.②④
B.②③
C.①③④
D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系xOy中,點A,B分別在x軸和y軸上, = ,∠AOB的角平分線與OA的垂直平分線交于點C,與AB交于點D,反比例函數(shù)y= 的圖象過點C,若以CD為邊的正方形的面積等于 ,則k的值是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長;
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥BC,DC⊥EC,AC=BC,DC=EC.
(1)求證:AE=BD;
(2)判斷AE與BD的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生最喜愛的球類運動,某初中在全校2000名學(xué)生中抽取部分學(xué)生進行調(diào)查,要求學(xué)生只能從“A(籃球)、B(羽毛球)、C(足球)、D(乒乓球)”中選擇一種.
(1)小明直接在八年級學(xué)生中隨機調(diào)查了一些同學(xué).他的抽樣是否合理?請說明理由.
(2)小王從各年級隨機抽取了部分同學(xué)進行調(diào)查,整理數(shù)據(jù),繪制出下列兩幅不完整的統(tǒng)計圖.請根據(jù)圖中所提供的信息,回答下列問題:
①請將條形統(tǒng)計圖補充完整;
②估計該初中最喜愛乒乓球的學(xué)生人數(shù)約為 人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com