【題目】在平面直角坐標(biāo)系中,點P(1,﹣1)關(guān)于原點的對稱點的坐標(biāo)為(
A.(1,1)
B.(1,﹣1)
C.(﹣1,1)
D.(﹣1,﹣1)

【答案】C
【解析】解:根據(jù)關(guān)于原點對稱的點的坐標(biāo)的特點,∴點(1,﹣1)關(guān)于原點過對稱的點的坐標(biāo)是(﹣1,1).
故選:C.
【考點精析】掌握關(guān)于原點對稱的點的坐標(biāo)是解答本題的根本,需要知道兩個點關(guān)于原點對稱時,它們的坐標(biāo)的符號相反,即點P(x,y)關(guān)于原點的對稱點為P’(-x,-y).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把直線y=-x-1沿x軸向右平移2個單位,所得直線的函數(shù)解析式為(

A. y=-x+1B. y=-x-3C. y=-2x-1D. y=2x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算中,計算正確的是( 。

A. 2a3a=6a B. (3a23=27a6 C. a4÷a2=2a D. a+b2=a2+ab+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正十二邊形的每一個內(nèi)角的度數(shù)為( )
A.120°
B.135°
C.150°
D.1080°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2+2x﹣1=0有兩個不相等的實數(shù)根,則m的取值范圍是( 。

A. m<﹣1 B. m>1 C. m<1且m≠0 D. m>﹣1且m≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得ABC,即如圖,我們將這種變換記為[θ,n].

(1)、如圖,對ABC作變換[50°,]得ABC,則SABC:SABC= ;直線BC與直線BC所夾的銳角為 度;

(2)、如圖,ABC中,BAC=30°,ACB=90°,對ABC 作變換[θ,n]得AB'C',使點B、C、C在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;

(3)、如圖,ABC中,AB=AC,BAC=36°,BC=l,對ABC作變換[θ,n]得ABC,使點B、C、B在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.

(1)、求證:DEAG;

(2)、如圖2,正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°α<360°),得到正方形OEFG;

在旋轉(zhuǎn)過程中,當(dāng)OAG是直角時,求α的度數(shù);

若正方形ABCD的邊長為2,在旋轉(zhuǎn)過程中,求AF長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MNPQ,C是MN上處在自動扶梯頂端B點正上方的一點,BCMN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈0.7,tan42°≈0.9)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:a2b-(3ab2﹣a2b)+2(2ab2﹣a2b),其中a=-1,b=2.

查看答案和解析>>

同步練習(xí)冊答案