設(shè)x1、x2是方程x2-2(k-1)x+k2=0的兩個實數(shù)根,且x12+x22=4,求k的值.
【答案】分析:x12+x22=x12+2x1•x2+x22-2x1•x2=(x1+x22-2x1•x2=4,然后根據(jù)根與系數(shù)的關(guān)系即可得到一個關(guān)于k的方程,從而求得k的值.
解答:解;x12+x22=4,即x12+x22=x12+2x1•x2+x22-2x1•x2=(x1+x22-2x1•x2=4,
又∵x1+x2=2(k-1),x1•x2=k2,
代入上式有4(k-1)2-2k2=4,
解得k=0或k=4.
當k=4時,△=36-64=-28<0,方程無解,
故k=0.
點評:將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

設(shè)x1、x2是方程2x2-6x+3=0的兩個根,那么x12+x22的值為( 。
A、3B、-3C、6D、-6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設(shè)x1、x2是方程
1
3
x2-x-3=0的兩個根,則有(  )
A、x1+x2=-1
B、x1x2=-9
C、x1x2=1
D、x1x2=9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設(shè)x1、x2是方程2x2-5x-6=0的兩根,求
1
x
2
1
+
1
x
2
2
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設(shè)x1,x2是方程x2-4x+3=0的兩根,則x1+x2=
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設(shè)x1、x2是方程3x2-7x-6=0的兩根,則(x1-3)•(x2-3)=( 。
A、6B、4C、2D、0

查看答案和解析>>

同步練習冊答案