【題目】把二次函數(shù)y=x2﹣12x化為形如y=a(x﹣h)2+k的形式

【答案】y=(x﹣6)2﹣36
【解析】解:y=x2﹣12x=(x2﹣12x+36)﹣36=(x﹣6)2﹣36,即y=(x﹣6)2﹣36. 所以答案是y=(x﹣6)2﹣36.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學了解本校學生對球類運動的愛好情況,分為足球、籃球、排球、其他四個方面調查若干名學生,每人只選其中之一,統(tǒng)計后繪制成不完整的“折線統(tǒng)計圖”(扇形統(tǒng)計圖),根據(jù)信息解答下列問題:

(1)在這次調查中,一共調查名學生;
(2)在扇形統(tǒng)計圖中,“足球”所在扇形圓心角度;
(3)將折線統(tǒng)計圖補充完整.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:12(18)+(5)6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知二次函數(shù)(a、b、c為常數(shù),a0)的圖象過點O(0,0)和點A(4,0),函數(shù)圖象最低點M的縱坐標為,直線l的解析式為y=x.

(1)求二次函數(shù)的解析式;

(2)直線l沿x軸向右平移,得直線l′,l′與線段OA相交于點B,與x軸下方的拋物線相交于點C,過點C作CEx軸于點E,把BCE沿直線l′折疊,當點E恰好落在拋物線上點E′時(圖2),求直線l′的解析式;

(3)在(2)的條件下,l′與y軸交于點N,把BON繞點O逆時針旋轉135°得到B′ON′,P為l′上的動點,當PB′N′為等腰三角形時,求符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們常用的數(shù)是十進制數(shù),計算機程序使用的是二進制數(shù)(只有數(shù)碼01),它們兩者之間可以互相換算,如將(1012,(10112換算成十進制數(shù)分別是(10121×22+0×21+14+0+15,(101121×23+0×22+1×21+11l.按此方式,將二進制(101102換算成十進制數(shù)的結果是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,以AC為直徑作O交AB于點D,E為BC的中點,連接DE并延長交AC的延長線于點F.

(1)求證:DE是O的切線;

(2)若CF=2,DF=4,求O直徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是一位同學做的四道題:①2a+3b=5ab;②(3a32=6a6;③a6÷a2=a3;④a2a3=a5 , 其中做對的一道題的序號是(
A.①
B.②
C.③
D.④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上林老師出示了問題:如圖,AD∥BC,∠AEF=90°AD=AB=BC=DC,∠B=90°,點E是邊BC的中點,且EF交∠DCG的平分線CF于點F,求證:AE=EF.
同學們作了一步又一步的研究:

(1)、經過思考,小明展示了一種解題思路:如圖1,取AB的中點M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF,小明的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)、小穎提出一個新的想法:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結論“AE=EF”仍然成立,小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(3)、小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結論“AE=EF”仍然成立.小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】紙復印文件,在甲復印店不管一次復印多少頁,每頁收費0.1元.在乙復印店復印同樣的文件,一次復印頁數(shù)不超過20時,每頁收費0.12元;一次復印頁數(shù)超過20時,超過部分每頁收費0.09元.

設在同一家復印店一次復印文件的頁數(shù)為為非負整數(shù)).

(1)根據(jù)題意,填寫下表:

一次復印頁數(shù)(頁)

5

10

20

30

甲復印店收費(元)

2

乙復印店收費(元)

(2)設在甲復印店復印收費元,在乙復印店復印收費元,分別寫出關于的函數(shù)關系式;

(3)當時,顧客在哪家復印店復印花費少?請說明理由.

查看答案和解析>>

同步練習冊答案