如圖,平面直角坐標系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標為(0,6);將BCD沿BD折疊(D點在OC邊上),使C點落在OA邊的E點上,并將BAE沿BE折疊,恰好使點A落在BD的點F上.
(1)直接寫出∠ABE、∠CBD的度數(shù),并求折痕BD所在直線的函數(shù)解析式;
(2)過F點作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線y=ax2+bx+c經(jīng)過B、H、D三點,求拋物線的函數(shù)解析式;
(3)若點P是矩形內(nèi)部的點,且點P在(2)中的拋物線上運動(不含B、D點),過點P作PN⊥BC分別交BC和BD于點N、M,設h=PM-MN,試求出h與P點橫坐標x的函數(shù)解析式,并畫出該函數(shù)的簡圖,分別寫出使PM<NM、PM=MN、PM>MN成立的x的取值范圍.
精英家教網(wǎng)
分析:(1)根據(jù)折疊的性質(zhì)知:∠CBD、∠DBE、∠EBA都相等,因此∠ABE=∠CBD=30°;
在Rt△ABE中,已知了∠ABE=30°,而AB=OC=6,由此可求出BE即BC的長,即可得到B點的坐標;在Rt△BCD中,已知∠CBD的度數(shù)及BC的長,通過解直角三角形可求出CD的長,也就得到了D點的坐標,進而可用待定系數(shù)法求出直線BD的解析式;
(2)由于∠AEB=∠BEF=60°,易求得∠FEG=60°;在Rt△BEF中,BE的長在(1)中已求得,∠EBF=30°,即可求出EF的長;進而可在Rt△FEG中通過解直角三角形求出FG、GE的值,即可得到H點的坐標,進而可用待定系數(shù)法求出拋物線的解析式;
(3)根據(jù)直線BD和拋物線的解析式分別表示出M、P的縱坐標,進而可得到MN、PM的表達式,也就能得到關(guān)于h、x的函數(shù)關(guān)系式,可根據(jù)所得函數(shù)的性質(zhì)來判斷出PM<NM、PM=MN、PM>MN成立的x的取值范圍.
解答:解:(1)∠ABE=∠CBD=30°
在△ABE中,AB=6
BC=BE=
AB
cos30°
=4
3

CD=BCtan30°=4
∴OD=OC-CD=2
∴B(4
3
,6),D(0,2)
設BD所在直線的函數(shù)解析式是y=kx+b;
4
3
k+b=6
b=2
,
k=
3
3
b=2
;
所以BD所在直線的函數(shù)解析式是y=
3
3
x+2
;

(2)∵EF=EA=ABtan30°=2
3
,∠FEG=180°-∠FEB-∠AEB=60°;
又∵FG⊥OA,
∴FG=EFsin60°=3,GE=EFcos60°=
3
,OG=OA-AE-GE=
3

又H為FG中點
∴H(
3
,
3
2
)(4分)
∵B(4
3
,6)、D(0,2)、H(
3
,
3
2
)在拋物線y=ax2+bx+c圖象上
48a+4
3
b+c=6
c=2
3a+
3
b+c=
3
2

a=
1
6
b=-
3
3
c=2

∴拋物線的解析式是y=
1
6
x2-
3
3
x+2


(3)∵MP=(
3
3
x+2)-(
1
6
x2-
3
3
x+2)=-
1
6
x2+
2
3
3
x

MN=6-(
3
3
x+2)=4-
3
3
x
精英家教網(wǎng)
h=MP-MN=(-
1
6
x2+
2
3
3
x)-(4-
3
3
x)=-
1
6
x2+
3
x-4

-
1
6
x2+
3
x-4=0

x1=2
3
,x2=4
3

該函數(shù)簡圖如圖所示:
當0<x<2
3
時,h<0,即PM<MN
當x=2
3
時,h=0,即PM=MN
2
3
<x<4
3
時,h>0,即PM>MN.
點評:此題主要考查了矩形的性質(zhì)、圖形的折疊變換、一次函數(shù)及二次函數(shù)解析式的確定、二次函數(shù)的應用等知識.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
1x
上運動,則B點在函數(shù)解析式
 
上運動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(1,2).將△AOB繞點A逆時針旋轉(zhuǎn)90°,則點O的對應點C的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:平面直角坐標系中,△ABC的三個頂點的坐標為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點D為線段OA上一動點,連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案