【題目】如圖,一艘船由A港沿北偏東65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.
求:(1)∠C的度數(shù);
(2)A,C兩港之間的距離為多少km.
【答案】(1)∠C=60°(2)AC=
【解析】
(1)根據(jù)方位角的概念確定∠ACB=40°+20°=60;
(2)AB=30 ,過B作BE⊥AC于E,解直角三角形即可得到結(jié)論.
解:(1)如圖,在點C處建立方向標
根據(jù)題意得,AF∥CM∥BD
∴∠ACM=∠FAC, ∠BCM=∠DBC
∴∠ACB=∠ACM+∠BCM=40°+20°=60°,
(2)∵AB=30 ,過B作BE⊥AC于E,
∴∠AEB=∠CEB=90°,
在Rt△ABE中,∵∠ABE=45°,AB=30,
∴AE=BE=AB=30km,
在Rt△CBE中,∵∠ACB=60°,
∴CE=BE=10 km,
∴AC=AE+CE=30+10 ,
∴A,C兩港之間的距離為(30+10)km,
科目:初中數(shù)學 來源: 題型:
【題目】世界500強H公司決定購買某演唱會門票獎勵部分優(yōu)秀員工,演唱會的購票方式有以下兩種,
方式一:若單位贊助廣告費10萬元,則該單位所購門票的價格為每張0.02萬元(其中總費用=廣告贊助費+門票費);
方式二:如圖所示,設購買門票x張,總費用為y萬元
(1)求用購票“方式一”時y與x的函數(shù)關(guān)系式;
(2)若H、A兩家公司分別釆用方式一、方式二購買本場演唱會門票共400張,且A公司購買超過100張,兩公司共花費27.2萬元,求H、A兩公司各購買門票多少張?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O交斜邊AC于點D,過圓心O作OE∥AC,交BC于點E,連接DE.
(1)判斷DE與⊙O的位置關(guān)系并說明理由;
(2)求證:2DE2=CDOE;
(3)若tanC=,DE=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點B的坐標為(4,2),直線y=﹣x+與邊AB,BC分別相交于點M,N,函數(shù)y=(x>0)的圖象過點M.
(1)試說明點N也在函數(shù)y=(x>0)的圖象上;
(2)將直線MN沿y軸的負方向平移得到直線M′N′,當直線M′N′與函數(shù)y═(x>0)的圖象僅有一個交點時,求直線M'N′的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在扇形中,,半徑,點P為上任一點(不與A、O重合).
(1)如圖①,Q是上一點,若,求證:.
(2)如圖②,將扇形沿折疊,得到O的對稱點.
①若點落在上,求的長;
②當與扇形所在的圓相切時,求折痕的長.(注:本題結(jié)果不取近似值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知的三個頂點坐標分別是,,.
(1)請作出繞點逆時針旋轉(zhuǎn)的;
(2)以點為位似中心,將擴大為原來的2倍,得到,請在軸的左側(cè)畫出;
(3)請直接寫出的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,一架伸縮樓梯托架固定在墻面上,托架始終與地面垂直且.如圖2, 旋轉(zhuǎn)支撐臂繞著點旋轉(zhuǎn),當伸縮樓梯下放時,樓梯長米,點正好接觸地面,此時,旋轉(zhuǎn)支撐臂與樓梯托架之間的夾角為;當伸縮樓梯上收時,旋轉(zhuǎn)支撐臂繞著點逆時針旋轉(zhuǎn),樓梯長變?yōu)?/span>米,此時,樓梯底部的腳墊到地面的距離為( )米.
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若點(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b<0;其中正確的個數(shù)有( 。
A.2B.3C.4D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com