【題目】已知一個矩形紙片,將該紙片放置在平面直角坐標系中,點,點,點P邊上的動點.

(1)如圖①,經過點O、P折疊該紙片,得點和折痕.當點P的坐標為時,求的度數(shù);

(2)如圖②,當點P與點C重合時,經過點O、P折疊紙片,使點B落在點的位置,交于點M,求點M的坐標;

(3)過點P作直線,交于點Q,再取中點T,中點N,分別以,,為折痕,依次折疊該紙片,折疊后點O的對應點與點B的對應點恰好重合,且落在線段上,AC的對應點也恰好重合,也落在線段上,求此時點P的坐標(直接寫出結果即可).

【答案】(1).(2).(3).

【解析】

1)根據(jù)題意可知,,,,利用正切函數(shù)值即可求出答案;

2)根據(jù)題意由已知矩形,得,并設,則,利用勾股定理進行分析計算即可;

3)由題意過點P作直線,交于點Q,再取中點T,中點N,分別以,,為折痕,依次折疊該紙片進行分析即可.

解:(1)根據(jù)題意可知,,,,

中,,

.

(2)由已知矩形,得,

,又由折疊知,

,

.

,則,在中,

根據(jù)勾股定理,,

,解得.

∴點M的坐標為.

(3).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】近日,嶗山區(qū)教體局對參加2018年嶗山區(qū)禁毒知識競賽的2500名初中學生的初試成績(成績均為整數(shù))進行一次抽樣調查,所得數(shù)據(jù)如下表:

成績分組

 60.570.5

 70.580.5

 80.590.5

 90.5100.5

頻數(shù)

 50

 150

 200

 100

1)抽取樣本的總人數(shù);

2)根據(jù)表中數(shù)據(jù),補全圖中頻數(shù)分布直方圖;

3)若規(guī)定初試成績在90分以上(不包括90分)的學生進入決賽,則全區(qū)進入決賽的初中學生約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,∠=90°,,

⑴求的長;

⑵若∠的平分線交于點,連結,求∠的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3

1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為   ;

2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數(shù)字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系內,拋物線與線段有兩個不同的交點,其中點,點.有下列結論:

①直線的解析式為;②方程有兩個不相等的實數(shù)根;③a的取值范圍是.

其中,正確結論的個數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某中學開展的“好書伴我成長”讀書活動中,為了解八年級320名學生讀書情況,隨機調查了八年級部分學生讀書的冊數(shù).根據(jù)調查結果繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:

(Ⅰ)本次接受調查的學生人數(shù)為_____________,圖①中m的值為______________;

(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)統(tǒng)計的樣本數(shù)據(jù),估計該校讀書超過3冊的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 中,, 中點, 在邊上, 連接,過點

于點,連接。下列結論:

1234

其中正確的是__________(填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發(fā)展的新興產業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同即點D,F(xiàn)到地面的垂直距離相同,均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm結果保留根號

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yx2+x+3x軸交于AB兩點(點A在點B的右側),與y軸交于點C,過點Cx軸的平行線交拋物線于點P.連接AC

1)求點P的坐標及直線AC的解析式;

2)如圖2,過點Px軸的垂線,垂足為E,將線段OE繞點O逆時針旋轉得到OF,旋轉角為αα90°),連接FA、FC.求AF+CF的最小值;

3)如圖3,點M為線段OA上一點,以OM為邊在第一象限內作正方形OMNG,當正方形OMNG的頂點N恰好落在線段AC上時,將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形OMNG,當點M與點A重合時停止平移.設平移的距離為t,正方形OMNG的邊MNAC交于點R,連接OPOR、PR,是否存在t的值,使OPR為直角三角形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案