已知⊙O1和⊙O2相切,兩圓的圓心距為9cm,⊙O1的半徑為4cm,則⊙O2的半徑為(  )
分析:由⊙O1和⊙O2相切,兩圓的圓心距為9cm,⊙O1的半徑為4cm,分別從兩圓內(nèi)切與外切去分析求解即可求得答案.
解答:解:∵⊙O1和⊙O2相切,兩圓的圓心距為9cm,⊙O1的半徑為4cm,
∴若外切,則⊙O2的半徑為:9-4=5(cm);
若內(nèi)切,則⊙O2的半徑為:9+4=13(cm),
∴⊙O2的半徑為5cm或13cm.
故選D.
點評:此題考查了圓與圓的位置關(guān)系.此題比較簡單,注意掌握圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、已知⊙O1和⊙O2相外切,它們的半徑分別是1厘米和3厘米.那么半徑是4厘米,且和⊙O1、⊙O2都相切的圓共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知⊙O1和⊙O2相內(nèi)切,且⊙O1的半徑為6cm,兩圓的圓心距為3cm,則⊙O2的半徑為
3或9
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2相外切,且它們的半徑分別為1、2,則圓心距O1O2的長為
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2相外切,它們的半徑分別為2cm和3cm,則圓心距O1O2等于
5
5
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2相外切,O1O2=7,⊙O1的半徑為4,則⊙O2的半徑為
3
3

查看答案和解析>>

同步練習冊答案