如圖1,A、D分別在x軸和y軸上,CD∥x軸,BC∥y軸.點(diǎn)P從D點(diǎn)出發(fā),以1cm/s的速度,沿五邊形OABCD的邊勻速運(yùn)動(dòng)一周.記順次連接P、O、D三點(diǎn)所圍成圖形的面積為Scm2,點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.已知S與t之間的函數(shù)關(guān)系如圖2中折線段OEFGHI所示.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若直線PD將五邊形OABCD分成面積相等的兩部分,求直線PD的函數(shù)關(guān)系式.

【答案】分析:(1)先連接AD,設(shè)點(diǎn)A的坐標(biāo)為(a,0),由圖2得出DO=6-AO和S△AOD=4,即可得出DO•AO=4,從而得出a的值,再根據(jù)圖2得出A的坐標(biāo),再延長(zhǎng)CB交x軸于M,根據(jù)D點(diǎn)的坐標(biāo)得出AB=5cm,CB=1cm,即可求出AM==4,從而得出點(diǎn)B的坐標(biāo).
(2)先設(shè)點(diǎn)P(x,y),連PC、PO,得出S四邊形DPBC的面積,再進(jìn)行整理,即可得出x與y的關(guān)系,再由A,B點(diǎn)的坐標(biāo),求出直線AB的函數(shù)關(guān)系式,從而求出x、y的值,即可得出P點(diǎn)的坐標(biāo),再設(shè)直線PD的函數(shù)關(guān)系式為y=kx+4,求出K的值,即可得出直線PD的函數(shù)關(guān)系式.
解答:解:(1)連接AD,設(shè)點(diǎn)A的坐標(biāo)為(a,0),
由圖2知,則DO+OA=6cm,
DO=6-AO=6-a,
由圖2知S△AOD=4,
DO•AO=a(6-a)=4,
整理得:a2-6a+8=0,
解得a=2或a=4,
由圖2知,DO>3,
∴AO<3,
∴a=2,
∴A的坐標(biāo)為(2,0),
D點(diǎn)坐標(biāo)為(0,4),
在圖1中,延長(zhǎng)CB交x軸于M,
由圖2,知AB=5cm,CB=1cm,
∴MB=3,
∴AM==4.
∴OM=6,
∴B點(diǎn)坐標(biāo)為(6,3);

(2)因?yàn)镻在OA、BC、CD上時(shí),直線PD都不能將五邊形OABCD分成面積相等的兩部分,
所以只有點(diǎn)P一定在AB上時(shí),才能將五邊形OABCD分成面積相等的兩部分,
設(shè)點(diǎn)P(x,y),連PC、PO,則
S四邊形DPBC=S△DPC+S△PBC=S五邊形OABCD=(S矩形OMCD-S△ABM)=9,
6×(4-y)+×1×(6-x)=9,
即x+6y=12,
同理,由S四邊形DPAO=9可得2x+y=9,

解得x=,y=
∴P(,),
設(shè)直線PD的函數(shù)關(guān)系式為y=kx+4(k≠0),
=k+4,
∴k=-,
∴直線PD的函數(shù)關(guān)系式為y=-x+4.
點(diǎn)評(píng):此題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,解題的關(guān)鍵是根據(jù)題意設(shè)出函數(shù)關(guān)系式,是難點(diǎn),也是中考的重點(diǎn),需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,點(diǎn)D,E分別在線段AB,AC上,BE,CD相交于點(diǎn)O,AE=AD,要使△ABE≌△ACD,需添加一個(gè)條件是
∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO
(只要寫一個(gè)條件).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,點(diǎn)D、B分別在∠A的兩邊上,C是∠A內(nèi)一點(diǎn),且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分別為E、F.
求證:CE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)M、E分別在正方形ABCD的邊AB、BC上,以M為圓心,ME的長(zhǎng)為半徑畫弧,交AD邊于點(diǎn)F.當(dāng)
∠EMF=90°時(shí),求證:AF=BM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

老師布置了一道思考題:如圖,點(diǎn)M,N分別在等邊△ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q,求證:∠BQM=60°.
(1)請(qǐng)你完成這道思考題的證明.
(2)做完(1)后,同學(xué)們進(jìn)行了反思,提出了許多問題,如:若將題中的點(diǎn)M,N分別移到BC,CA的延長(zhǎng)線,直線AM,BN交于點(diǎn)Q,是否仍能得到∠BQM=60°?請(qǐng)你作出判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D、E分別在△ABC的邊AB、AC上,DE∥BC.
(1)若S△ADE=2,S△BCE=7.5,求S△BDE;
(2)若S△BDE=m,S△BCE=n,求S△ABC(用m、n表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案