(2013•重慶)作圖題:(不要求寫(xiě)作法)如圖,△ABC在平面直角坐標(biāo)系中,其中,點(diǎn)A、B、C的坐標(biāo)分別為A(-2,1),B(-4,5),C(-5,2).
(1)作△ABC關(guān)于直線(xiàn)l:x=-1對(duì)稱(chēng)的△A1B1C1,其中,點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別為A1、B1、C1;
(2)寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo).
分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)A1、B1、C1的位置,然后順次連接即可;
(2)根據(jù)平面直角坐標(biāo)系寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo)即可.
解答:解:(1)△A1B1C1如圖所示;


(2)A1(0,1),B1(2,5),C1(3,2).
點(diǎn)評(píng):本題考查了利用軸對(duì)稱(chēng)變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu),準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)如圖,對(duì)稱(chēng)軸為直線(xiàn)x=-1的拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸相交于A(yíng)、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(-3,0).
(1)求點(diǎn)B的坐標(biāo);
(2)已知a=1,C為拋物線(xiàn)與y軸的交點(diǎn).
①若點(diǎn)P在拋物線(xiàn)上,且S△POC=4S△BOC.求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線(xiàn)段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線(xiàn)于點(diǎn)D,求線(xiàn)段QD長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)已知:如圖①,在平行四邊形ABCD中,AB=12,BC=6,AD⊥BD.以AD為斜邊在平行四邊形ABCD的內(nèi)部作Rt△AED,∠EAD=30°,∠AED=90°.
(1)求△AED的周長(zhǎng);
(2)若△AED以每秒2個(gè)單位長(zhǎng)度的速度沿DC向右平行移動(dòng),得到△A0E0D0,當(dāng)A0D0與BC重合時(shí)停止移動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,△A0E0D0與△BDC重疊的面積為S,請(qǐng)直接寫(xiě)出S與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
(3)如圖②,在(2)中,當(dāng)△AED停止移動(dòng)后得到△BEC,將△BEC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α(0°<α<180°),在旋轉(zhuǎn)過(guò)程中,B的對(duì)應(yīng)點(diǎn)為B1,E的對(duì)應(yīng)點(diǎn)為E1,設(shè)直線(xiàn)B1E1與直線(xiàn)BE交于點(diǎn)P、與直線(xiàn)CB交于點(diǎn)Q.是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出α的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)如圖,平面直角坐標(biāo)系中,已知直線(xiàn)y=x上一點(diǎn)P(1,1),C為y軸上一點(diǎn),連接PC,線(xiàn)段PC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°至線(xiàn)段PD,過(guò)點(diǎn)D作直線(xiàn)AB⊥x軸,垂足為B,直線(xiàn)AB與直線(xiàn)y=x交于點(diǎn)A,且BD=2AD,連接CD,直線(xiàn)CD與直線(xiàn)y=x交于點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為
9
4
,
9
4
9
4
,
9
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)在平面直角坐標(biāo)系中,作△OAB,其中三個(gè)頂點(diǎn)分別是O(0,0),B(1,1),A(x,y)(-2≤x≤2,-2≤y≤2,x,y均為整數(shù)),則所作△OAB為直角三角形的概率是
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)如圖,已知拋物線(xiàn)y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5).
(1)求直線(xiàn)BC與拋物線(xiàn)的解析式;
(2)若點(diǎn)M是拋物線(xiàn)在x軸下方圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線(xiàn)BC于點(diǎn)N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線(xiàn)在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案