精英家教網 > 初中數學 > 題目詳情

【題目】甲、乙兩家綠化養(yǎng)護公司各自推出了校園綠化養(yǎng)護服務的收費方案. 甲公司方案:每月的養(yǎng)護費用y(元)與綠化面積x(平方米)是一次函數關系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500 元;綠化面積超過1000平方米時,每月在收取5500元的基礎上,超過部分每平方米收取4元.

(1)求如圖所示的y與x的函數解析式:(不要求寫出定義域);
(2)如果某學校目前的綠化面積是1200平方米,試通過計算說明:選擇哪家公司的服務,每月的綠化養(yǎng)護費用較少.

【答案】
(1)解:設y=kx+b,則有 ,解得 ,

∴y=5x+400


(2)解:綠化面積是1200平方米時,甲公司的費用為6400元,乙公司的費用為5500+4×200=6300元,

∵6300<6400

∴選擇乙公司的服務,每月的綠化養(yǎng)護費用較少


【解析】(1)利用待定系數法即可解決問題;(2)綠化面積是1200平方米時,求出兩家的費用即可判斷;

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC三個頂點都在格點上,點A、B、C的坐標分別為A(﹣1,3),B(﹣3,1),C(﹣1,1).請解答下列問題:

(1)畫出△ABC關于y軸對稱的△A1B1C1 , 并寫出B1的坐標.
(2)畫出△A1B1C1繞點C1順時針旋轉90°后得到的△A2B2C1 , 并求出點A1走過的路徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若x+5>0,則( )
A.x+1<0
B.x﹣1<0
C.<﹣1
D.﹣2x<12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設A= ÷(a﹣ ).
(1)化簡A;
(2)當a=3時,記此時A的值為f(3);當a=4時,記此時A的值為f(4);… 解關于x的不等式: ≤f(3)+f(4)+…+f(11),并將解集在數軸上表示出來.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一副三角尺按如圖的位置擺放(頂點C 與F 重合,邊CA與邊FE疊合,頂點B、C、D在一條直線上).將三角尺DEF繞著點F按順時針方向旋轉n°后(0<n<180 ),如果EF∥AB,那么n的值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則正比例函數y=(b+c)x與反比例函數y= 在同一坐標系中的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:AB為⊙O的直徑,AB=2,弦DE=1,直線AD與BE相交于點C,弦DE在⊙O上運動且保持長度不變,⊙O的切線DF交BC于點F.
(1)如圖1,若DE∥AB,求證:CF=EF;

(2)如圖2,當點E運動至與點B重合時,試判斷CF與BF是否相等,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明從家到學校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車沿著公路勻速行駛一段時間后到達學校,小明從家到學校行駛路程s(m)與時間t(min)的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1)求證:CF=AD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案