如圖,PA、PB是⊙O的兩條切線,切點是A、B.如果OP=4,PA=2
3
,那么∠AOB等于(  )
A.90°B.100°C.110°D.120°

∵△APO≌△BPO(HL),
∴∠AOP=∠BOP.
∵sin∠AOP=AP:OP=2
3
:4=
3
:2,
∴∠AOP=60°.
∴∠AOB=120°.
故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,直線CD經(jīng)過⊙O上一點C,AD⊥DC,AC平分∠DAB.
(1)求證:直線CD為⊙O的切線;
(2)若AD=2,AC=
5
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖已知OB是半徑,弦EF垂直O(jiān)B于H,點A是HF上的一點,BA和⊙O相交于另一點C,過點C的切線和EF的延長線交于點D:
(1)求證:DA=DC;
(2)當DF:EF=1:8,DF=
2
時,求AB•AC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,一種圓管的橫截面是同心圓的圓環(huán)面,大圓的弦AB切小圓于點C,大圓的弦AD交小圓于點E和F.為了計算截面的面積,甲、乙、丙三個同學分別用刻度尺測量出有關線段的長度:甲測得AB的長,乙測得AC的長,丙測得AD與EF的長.其中可以算出截面(圖中陰影部分)面積的同學是( 。
A.甲、乙B.乙、丙C.甲、丙D.甲、乙、丙

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB、CD是⊙0的兩條平行弦,BEAC交CD于E.過A點的切線交DC延長線于P,若AC=3
2
,求PC•CE的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,從點P引⊙O的切線PA,PB,切點分別為A,B,DE切⊙O于C,交PA,PB于D,E.若△PDE的周長為20cm,則PA=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線PC交OA的延長線于點P,且∠CPD=∠CDE.
(1)求證:DM=
2
3
r;
(2)求證:直線PC是扇形OAB所在圓的切線;
(3)設y=CD2+3CM2,當∠CPO=60°時,請求出y關于r的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知兩圓的半徑分別為1和3,當這兩圓圓心距為4時,這兩圓的位置關系是( 。
A.內(nèi)切B.相交C.外離D.外切

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖是一個“眾志成城,奉獻愛心”的圖標,圖標中兩圓的位置關系是______.

查看答案和解析>>

同步練習冊答案