已知一次函數(shù)的圖象經(jīng)過點(3,6)與點(
1
2
,-
1
2
),求這個函數(shù)的解析式.
設(shè)這個一次函數(shù)的解析式為:y=kx+b,
∵一次函數(shù)的圖象經(jīng)過點(3,6)與點(
1
2
,-
1
2
),
6=3k+b
-
1
2
=
1
2
k+b
,
解得
k=
13
5
b=-
9
5

∴這個一次函數(shù)的解析式為:y=
13
5
x-
9
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形OABC的頂點0、B的坐標分別是O(0,0)、B(8,4),頂點A在x軸上,頂點C在y軸上,把△OAB沿OB翻折,使點A落在點D的位置,BD與OA交于E.
①求證:OE=EB;
②求OE、DE的長度;
③求直線BD的解析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,點B在y軸的負半軸上,點A在x軸的正半軸上,且OA=2,tan∠OAB=2.
(1)求點B的坐標;
(2)求直線AB的解析式;
(3)若點C的坐標為(-2,0),在直線AB上是否存在一點P,使△APC與△AOB相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)圖象經(jīng)過點(-2,5)并且與y軸相交于點P,直線y=-
1
2
x+3與y軸相交于點Q,點Q恰與點P關(guān)于x軸對稱,求這個一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩人從少年宮出發(fā),沿相同的路線分別以不同的速度勻速跑向體育館,甲先跑一段路程后,乙開始出發(fā),當乙超出甲150米時,乙停在此地等候甲,兩人相遇后乙又繼續(xù)以原來的速度跑向體育館.如圖是甲、乙兩人在跑步的全過程中經(jīng)過的路程y(米)與甲出發(fā)的時間x(秒)的函數(shù)圖象.
(1)在跑步的全過程中,甲共跑了______米,甲的速度為______米/秒;
(2)乙跑步的速度是多少?乙在途中等候甲用了多長時間?
(3)甲出發(fā)多長時間第一次與乙相遇?此時乙跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平常對某種藥品的需求量y1(萬件),供應(yīng)量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+50,y2=2x-22.當y1=y2時,該藥品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)圖象中a,b,c的值分別為:a=______,b=______,c=______.
(2)求該藥品的穩(wěn)定價格與穩(wěn)定需求量.
(3)若供應(yīng)量和需求量這兩種量之間相差3萬件,求此時對應(yīng)的價格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以點M(0,
3
)為圓心,以2
3
長為半徑作⊙M交x軸于A,B兩點,交y軸于C,D兩點,連接AM并延長交⊙M于P點,連接PC交x軸于E.
(1)求出CP所在直線的解析式;
(2)連接AC,請求△ACP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明在整個上學(xué)途中,他出發(fā)后t分鐘時,他所在的位置與家的距離為s千米,且s與t之間的函數(shù)關(guān)系的圖象如圖中的折線段OA-OB所示.則折線段OA-AB所對應(yīng)的函數(shù)關(guān)系式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點A(6
3
,0),B(0,6)
,經(jīng)過A、B的直線l以每秒1個單位的速度向下作勻速平移運動,與此同時,點P從點B出發(fā),在直線l上以每秒1個單位的速度沿直線l向右下方向作勻速運動.設(shè)它們運動的時間為t秒.
(1)用含t的代數(shù)式表示點P的坐標;
(2)過O作OC⊥AB于C,過C作CD⊥x軸于D,問:t為何值時,以P為圓心、1為半徑的圓與直線OC相切?并說明此時⊙P與直線CD的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案