我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,點A、B、C、D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,-3),AB為半圓的直徑,半圓圓心M的坐標為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)開動腦筋想一想,相信你能求出經(jīng)過點D的“蛋圓”切線的解析式.
(3)如果直線x=m在線段OB上移動,交x軸于點D,交拋物線于點E,交BD于點F.連接DE和BE后,對于問題“是否存在這樣的點E,使△BDE的面積最大?”小明同學認為:“當E為拋物線的頂點時,△BDE的面積最大.”他的觀點是否正確?提出你的見解,若△BDE的面積存在最大值,請求出m的值以及點E的坐標.
(1)設該拋物線的解析式為y=ax2+bx+c.
根據(jù)題意知A、B、D點的坐標分別是(-1,0)、(3,0)、(0,-3),
則可列方程組
0=a-b+c
0=9a+3b+c
-3=c
,
解得c=-3、a=1、b=-2,
∴“蛋圓”拋物線部分的解析式為y=x2-2x-3(-1≤x≤3);

(2)設過點D(0,-3)的“蛋圓”切線的解析式為y=kx-3,
將其代入拋物線部分的解析式為y=x2-2x-3得
kx-3=x2-2x-3,即x2-(2+k)x=0,
∵△=(2+k)2=0,
∴k=-2,
∴過點D(0,-3)的“蛋圓”切線的解析式為y=-2x-3;

(3)由上面知B、D點的坐標分別是(3,0)、(0,-3),
則直線BD的解析式為y=x-3,
∵點F為直線x=m與直線BD的交點,點E為直線x=m與拋物線y=x2-2x-3的交點,
∴點F的坐標為(m,m-3),點E的坐標為(m,m2-2m-3),
∴S△BDE=S△BDF+S△DEF=
1
2
×EF×OD+
1
2
×EF×DB
,
=
1
2
×EF×OB
,
=
1
2
[m-3-(m2-2m-3)]×3
,
=
3
2
(3m-m2)
,
=-
3
2
(m-
3
2
)
2
+
27
8

又∵0≤m≤3,
∴當m=
3
2
,S△BDE取最大值
27
8
,點E的坐標為(
3
2
,-
9
4
),
∵拋物線的頂點為(1,-4),
∴小明同學認為:“當E為拋物線的頂點時,△BDE的面積最大.”這樣的觀點是錯誤的.
答:(1)“蛋圓”拋物線部分的解析式為y=x2-2x-3(-1≤x≤3).
(2)過點D(0,-3)的“蛋圓”切線的解析式為y=-2x-3.
(3)存在這樣的點E的坐標為(
3
2
,-
15
4
),使△BDE的面積最大為
27
8
;小明同學認為:“當E為拋物線的頂點時,△BDE的面積最大.”這樣的觀點是錯誤的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線y=
1
2
x+
3
2
與直線y=x交于點A,點B在直線y=
1
2
x+
3
2
上,∠BOA=90°.拋物線y=ax2+bx+c過點A,O,B,頂點為點E.
(1)求點A,B的坐標;
(2)求拋物線的函數(shù)表達式及頂點E的坐標;
(3)設直線y=x與拋物線的對稱軸交于點C,直線BC交拋物線于點D,過點E作FEx軸,交直線AB于點F,連接OD,CF,CF交x軸于點M.試判斷OD與CF是否平行,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(6999•重慶)如的,二次函數(shù)y=96+29+c的的象與9軸只有一個公共點P,與y軸的交點為Q.過點Q的直線y=69+m與9軸交于點A,與這個二次函數(shù)的的象交于另一點2,若S△2PQ=3S△APQ,求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線y=ax2+bx+c經(jīng)過A(-2,-4),O(0,0),B(2,0)三點.
(1)求拋物線y=ax2+bx+c的解析式;
(2)若點M是該拋物線對稱軸上的一點,求AM+OM的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+8(a≠0)的圖象與x軸交與A,B兩點,與y軸交與點C,已知點A的坐標為(-2,0),sin∠ABC=
2
5
5
,點D是拋物線的頂點,直線DC交x軸于點E.
(1)求拋物線的解析式及其頂點D的坐標;
(2)在直線CD上是否存在一點Q,使以B,C,Q為頂點的三角形是等腰三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由;
(3)點P是直線y=2x-4上一點,過點P作直線PM垂直于直線CD,垂足為M,若∠MPO=75°,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知:拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點,與y軸交于點C,經(jīng)過B、C兩點的直線是y=
1
2
x-2,連接AC.
(1)B、C兩點坐標分別為B(______,______)、C(______,______),拋物線的函數(shù)關系式為______;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內部能否截出面積最大的矩形DEFC(頂點D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長是4,E是AB邊上一點(E不與A、B重合),F(xiàn)是AD的延長線上一點,DF=2BE.四邊形AEGF是句型,其面積y隨BE的長x的變化而變化且構成函數(shù).
(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)若上述(1)中是二次函數(shù),請用配方法把它轉化成y=a(x-h)2+k的形式,并指出當x取何值時,y取得最大(或最。┲担撝凳嵌嗌?
(3)直接寫出拋物線與x軸交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某公司生產(chǎn)的A種產(chǎn)品,每件成本是2元,每件售價是3元,一年的銷售量是10萬件.為了獲得更多的利潤,公司準備拿出一定資金來做廣告.根據(jù)經(jīng)驗,每年投入的廣告費為x(萬元)時,產(chǎn)品的年銷售量是原來的y倍,且y是x的二次函數(shù),公司作了預測,知x與y之間的對應關系如下表:
x(萬元)012
y11.51.8
(1)根據(jù)上表,求y關于x的函數(shù)關系式;
(2)如果把利潤看成是銷售總額減去成本和廣告費,請你寫出年利潤S(萬元)與廣告費x(萬元)的函數(shù)關系式;
(3)從上面的函數(shù)關系式中,你能得出什么結論?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標平面中,O為坐標原點,二次函數(shù)y=x2+bx+c的圖象與y軸的負半軸相交于點C,點C的坐標為(0,-3),且BO=CO.
(1)求出B點坐標和這個二次函數(shù)的解析式;
(2)求出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案