【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù): 1.414, 1.732)
【答案】
(1)
解:過(guò)B作BG⊥DE于G,
Rt△ABH中,i=tan∠BAH= = ,
∴∠BAH=30°,
∴BH= AB=5
(2)
解:∵BH⊥HE,GE⊥HE,BG⊥DE,
∴四邊形BHEG是矩形.
∵由(1)得:BH=5,AH=5 ,
∴BG=AH+AE=5 +15,
Rt△BGC中,∠CBG=45°,
∴CG=BG=5 +15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE= AE=15 .
∴CD=CG+GE﹣DE=5 +15+5﹣15 =20﹣10 ≈2.7m
【解析】(1)過(guò)B作DE的垂線,設(shè)垂足為G.分別在Rt△ABH中,通過(guò)解直角三角形求出BH、AH;(2)在△ADE解直角三角形求出DE的長(zhǎng),進(jìn)而可求出EH即BG的長(zhǎng),在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長(zhǎng)然后根據(jù)CD=CG+GE﹣DE即可求出宣傳牌的高度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)3a3b(-2ab)+(-3a2b)2
(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2
(3) +(2018-)0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AD=BC,AB=CD,AD>AB,將長(zhǎng)方形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為MN,連接CN.若△CDN的面積與△CMN的面積比為1:3,
(1)求證:DN=BM;(2)求ND:NA的值;(3)求MN2:BM2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別是(-3,0),(0,6),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿x軸正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)C從點(diǎn)B出發(fā),沿射線BO方向以每秒2個(gè)單位的速度運(yùn)動(dòng).以CP,CO為鄰邊構(gòu)造PCOD.在線段OP延長(zhǎng)線上一動(dòng)點(diǎn)E,且滿足PE=AO.
(1)當(dāng)點(diǎn)C在線段OB上運(yùn)動(dòng)時(shí),求證:四邊形ADEC為平行四邊形;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為秒時(shí),求此時(shí)四邊形ADEC的周長(zhǎng)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙、丙三艘輪船從港口O出發(fā),當(dāng)分別行駛到A,B,C處時(shí),經(jīng)測(cè)量得,甲船位于港口的北偏東43°45′方向,乙船位于港口的北偏東76°35′方向,丙船位于港口的北偏西43°45′方向.
(1)求∠BOC的度數(shù);
(2)求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大。
閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性質(zhì))
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8,…頂點(diǎn)依次用A1,A2,A3,A4表示,則頂點(diǎn)A2018的坐標(biāo)是( )
A. (504,﹣504) B. (﹣504,504) C. (505,﹣505) D. (﹣505,505)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:四邊形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,點(diǎn)E是射線CD上的一個(gè)動(dòng)點(diǎn)(與C、D不重合),將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°后,得到△ABE',連接EE'.
(1)如圖1,∠AEE'= °;
(2)如圖2,如果將直線AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°后交直線BC于點(diǎn)F,過(guò)點(diǎn)E作EM∥AD交直線AF于點(diǎn)M,寫(xiě)出線段DE、BF、ME之間的數(shù)量關(guān)系;
(3)如圖3,在(2)的條件下,如果CE=2,AE=,求ME的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com