如圖所示,拋物線y=ax2+數(shù)學公式+c經(jīng)過原點O和A(4,2),與x軸交于點C,點M、N同時從原點O出發(fā),點M以2個單位/秒的速度沿y軸正方向運動,點N以1個單位/秒的速度沿x軸正方向運動,當其中一個點停止運動時,另一點也隨之停止.
(1)求拋物線的解析式和點C的坐標;
(2)在點M、N運動過程中,
①若線段MN與OA交于點G,試判斷MN與OA的位置關系,并說明理由;
②若線段MN與拋物線相交于點P,探索:是否存在某一時刻t,使得以O、P、A、C為頂點的四邊形是等腰梯形?若存在,請求出t值;若不存在,請說明理由.

解:(1)依題意,A點坐標為(4,2),O點坐標為(0,0),
代入解析式得
,
解得:,
∴拋物線的解析式為y=-x2+
令y=0,則有0=-x2+,
解得x1=0,x2=6,
故點C坐標為(6,0);

(2)①MN⊥OA,
理由如下:過點A作AB⊥x軸于點B,則OB=4,AB=2
由已知可得:==,
∴Rt△MON∽Rt△OBA,
∴∠AOB=∠NMO,
∵∠NMO+∠MNO=90°,∴∠AOB+∠MNO=90°,
∴∠OGN=90°,∴MN⊥OA,
②存在
設點P的坐標為(x,y),依題意可得:當點P是點A關于拋物線對稱軸的對稱點時,四邊形APOC為等腰梯形.
則點P坐標為(2,2),及M(0,2t),N(t,0)
設直線MN的解析式為y=kx+2t
將點N、P的坐標代入得
,
解得:(不合題意舍去),,
所以,當t=3秒時,四邊形OPAC是等腰梯形.
分析:(1)利用待定系數(shù)法將A點坐標為(4,2),O點坐標為(0,0),代入求出二次函數(shù)解析式即可,進而利用y=0,求出圖象與x軸交點坐標,即可得出C點坐標;
(2)①過點A作AB⊥x軸于點B,則OB=4,AB=2,進而得出Rt△MON∽Rt△OBA,即可求出MN⊥OA;
②依題意可得:當點P是點A關于拋物線對稱軸的對稱點時,四邊形APOC為等腰梯形,得出P點坐標,及M(0,2t),N(t,0)設直線MN的解析式為y=kx+2t,將點N、P的坐標代入得求出t的值即可.
點評:此題主要考查了二次函數(shù)的綜合應用以及等腰梯形的性質(zhì)和待定系數(shù)法求二次函數(shù)解析式、相似三角形的判定等知識,得出P點坐標表示出M,N坐標進而求出直線MN的解析式是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,拋物線y=ax2+bx+c與兩坐標軸的交點分別是A、B、E,且△ABE是等腰直角三角形,AE=BE,則下列關系式中不能成立的是( 。
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•河源二模)已知:如圖所示,拋物線y=-x2+bx+c與x軸的兩個交點分別為A(1,0),B(3,0).
(1)求拋物線的解析式;
(2)設點P在該拋物線上滑動,且滿足條件S△PAB=1的點P有幾個?并求出所有點P的坐標;
(3)設拋物線交y軸于點C,問該拋物線對稱軸上是否存在點M,使得△MAC的周長最小?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•槐蔭區(qū)一模)如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標分別為(-1,0)、(0,-3).
(1)求拋物線的函數(shù)解析式;
(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;
(3)在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•陜西)如圖所示,拋物線對應的函數(shù)解析表達式只可能是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•陜西)如圖所示的拋物線是把y=-x2經(jīng)過平移而得到的.這時拋物線過原點O和x軸正向上一點A,頂點為P;
①當∠OPA=90°時,求拋物線的頂點P的坐標及解析表達式;
②求如圖所示的拋物線對應的二次函數(shù)在-
1
2
≤x≤
1
2
時的最大值和最小值.

查看答案和解析>>

同步練習冊答案