【題目】如圖,在中,分別是的中點(diǎn),以為斜邊作,若,則下列結(jié)論不正確的是( )
A. B.平分 C. D.
【答案】C.
【解析】
試題分析:由AB=AC,∠CAB=45°,根據(jù)等邊對(duì)等角及三角形內(nèi)角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根據(jù)三角形內(nèi)角和定理求出∠ACD=45°,根據(jù)等角對(duì)等邊得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,從而判斷A正確;根據(jù)三角形的中位線定理得到FE=AB,F(xiàn)E∥AB,根據(jù)平行線的性質(zhì)得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根據(jù)直角三角形的性質(zhì)以及等腰三角形的性質(zhì)得到FD=AC,DF⊥AC,∠FDC=45°,等量代換得到FE=FD,再求出∠FDE=∠FED=22.5°,進(jìn)而判斷B正確;
由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,從而判斷C錯(cuò)誤;
在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代換得到AB=CD,從而判斷D正確.
∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.
∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,
∴∠ECD=∠ACB+∠ACD=112.5°,故A正確,不符合題意;
∵E、F分別是BC、AC的中點(diǎn),∴FE=AB,F(xiàn)E∥AB,
∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.
∵F是AC的中點(diǎn),∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,
∵AB=AC,∴FE=FD,
∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,
∴∠FDE=∠FDC,∴DE平分∠FDC,故B正確,不符合題意;
∵∠FEC=∠B=67.5°,∠FED=22.5°,
∴∠DEC=∠FEC﹣∠FED=45°,故C錯(cuò)誤,符合題意;
∵Rt△ADC中,∠ADC=90°,AD=DC,
∴AC=CD,∵AB=AC,
∴AB=CD,故D正確,不符合題意.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將拋物線y=(x﹣1)2先向上平移2個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度,得到的拋物線的解析式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的開(kāi)口向上,且經(jīng)過(guò)點(diǎn).
(1)若此拋物線經(jīng)過(guò)點(diǎn),且與軸相交于點(diǎn).
①填空: (用含的代數(shù)式表示);
②當(dāng)的值最小時(shí),求拋物線的解析式;
(2)若,當(dāng),拋物線上的點(diǎn)到軸距離的最大值為3時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年為阻擊新冠疫情,某社區(qū)要了解每一棟樓的居民年齡情況,以便有針對(duì)性進(jìn)行防疫.一志愿者得到某棟樓60歲以上人的年齡(單位:歲)數(shù)據(jù)如下:62,63,75,79,68,85,82,69,70.獲得這組數(shù)據(jù)的方法是( )
A.直接觀察B.實(shí)驗(yàn)C.調(diào)查D.測(cè)量
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=k1x+b的圖象與x軸交于點(diǎn)A(-3,0),與y軸交于點(diǎn)B,且與正比例函數(shù)y=kx的圖象交點(diǎn)為C(3,4).
(1)求正比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)若點(diǎn)D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,請(qǐng)求出點(diǎn)D的坐標(biāo);
(3)在x軸上是否存在一點(diǎn)E使△BCE周長(zhǎng)最小,若存在,求出點(diǎn)E的坐標(biāo)
(4)在x軸上求一點(diǎn)P使△POC為等腰三角形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘船以每小時(shí)30海里的速度向北偏東75°方向航行,在點(diǎn) 處測(cè)得碼頭 的船的東北方向,航行40分鐘后到達(dá)處,這時(shí)碼頭恰好在船的正北方向,在船不改變航向的情況下,求出船在航行過(guò)程中與碼頭的最近距離.(結(jié)果精確的0.1海里,參考數(shù)據(jù) )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校有一塊長(zhǎng)方形活動(dòng)場(chǎng)地,長(zhǎng)為 米,寬比長(zhǎng)少 米,實(shí)施“陽(yáng)光體育”行動(dòng)以后,學(xué)校為了擴(kuò)大學(xué)生的活動(dòng)場(chǎng)地,讓學(xué)生能更好地進(jìn)行體育活動(dòng),將操場(chǎng)的長(zhǎng)和寬都增加 米.
(1)求活動(dòng)場(chǎng)地原來(lái)的面積是多少平方米.(用含 的代數(shù)式表示)
(2)若 ,求活動(dòng)場(chǎng)地面積增加后比原來(lái)多多少平方米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE∥BA交AC于點(diǎn)E,DF∥CA交AB于點(diǎn)F,已知CD=3.
(1)求AD的長(zhǎng);
(2)求四邊形AEDF的周長(zhǎng).(注意:本題中的計(jì)算過(guò)程和結(jié)果均保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com