【題目】如圖,Rt△ABC中,∠BAC=90。 , AB=6,sinC= ,以點(diǎn)A為圓心,AB長為半徑作弧交AC于M,分別以B、M為圓心,以大于 BM長為半徑作弧,兩弧相交于N,射線AN與BC相交于D,則AD的長為 .
【答案】 .
【解析】解:Rt△ABC中,∠BAC=90。,AB=6,sinC= ,sinC= ,BC=10 ,根據(jù)勾股定理得出AC=8 ,過點(diǎn)D做DE⊥AC于點(diǎn)E,DF⊥AB于點(diǎn)F,根據(jù)題意知,AD平分∠BAC,∠DAE=∠DAF=45° ,DE=DF ,SABC=AB·AC=24 ,,SABC=DE(AB+AC) , DE= ,在RtADE中,∠DAE=45° ,AE=DE= ,根據(jù)勾股定理得出AD= .
根據(jù)勾股定理及銳角三角函數(shù)得出BC,AC的長,根據(jù)角平分線的性質(zhì)定理得出DE=DF,根據(jù)三角形的面積法得出DE的長,進(jìn)而利用勾股定理得出AD的長。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,點(diǎn)P為BC上任意一點(diǎn),連接PA,以PA,PC為鄰邊作平行四邊形PAQC,連接PQ,則PQ的最小值為( 。
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù) 的圖象經(jīng)過點(diǎn)A(4,0),B(﹣4,﹣4),且與y軸交于點(diǎn)C.
(1)試求此二次函數(shù)的解析式;
(2)試證明:∠BAO=∠CAO(其中O是原點(diǎn));
(3)若P是線段AB上的一個(gè)動點(diǎn)(不與A、B重合),過P作y軸的平行線,分別交此二次函數(shù)圖象及x軸于Q、H兩點(diǎn),試問:是否存在這樣的點(diǎn)P,使PH=2QH?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字1,2,3,4.如圖2,正方形ABCD頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針方向連續(xù)跳幾個(gè)邊長.
如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長,落到圈D;若第二次擲得2,就從D開始順時(shí)針連續(xù)跳2個(gè)邊長,落到圈B;…
設(shè)游戲者從圈A起跳.
(1)嘉嘉隨機(jī)擲一次骰子,求落回到圈A的概率P1;
(2)淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她與嘉嘉落回到圈A的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著科技進(jìn)步,無人機(jī)的應(yīng)用越來越廣,如圖,在某一時(shí)刻,無人機(jī)上的探測器顯示,從無人機(jī)A處看一棟樓頂部B點(diǎn)的仰角和看與頂部B在同一鉛垂線上高樓的底部c的俯角.
(1)如果上述仰角與俯角分別為30。與60。 , 且該樓的高度為30米,求該時(shí)刻無人機(jī)的豎直高度CD.
(2)如果上述仰角與俯角分別為α與β,且該樓的高度為m米.求用α、β、m表示該時(shí)刻無人機(jī)的豎直高度CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組在活動時(shí),老師提出了這樣一個(gè)問題:如圖1,在中,,,D是BC的中點(diǎn),求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使,請補(bǔ)充完整證明“≌”的推理過程.
求證:≌
證明:延長AD到點(diǎn)E,使
在和中已作,
______,
中點(diǎn)定義,
≌______,
探究得出AD的取值范圍是______;
(感悟)解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”等字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個(gè)三角形中.
(問題解決)
如圖2,中,,,AD是的中線,,,且,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點(diǎn)A的切線交于點(diǎn)D,連接DC并延長交AB的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結(jié)果保留根號和π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com