【題目】如圖,這是一個計算程序示意圖.
規(guī)定:從“輸入x”到“加上5”為一次運算.
例如:輸入“x=3”,則“,6+5=11.”(完成一次運算)
因為,所以輸出結(jié)果y=11.
(1)當x=2時,y= ;當x=-3時,y= .
(2)若程序進行了一次運算,輸出結(jié)果y=7,則輸入的x值為 .
(3)若輸入x后,需要經(jīng)過兩次運算才輸出結(jié)果y,求x的取值范圍.
【答案】(1)9,3;(2)1;(3)<-2.
【解析】
(1)把x=2和-3輸入,求出結(jié)果,看結(jié)果是否大于等于1,不大于1,把求出的結(jié)果再代入代數(shù)式,求出結(jié)果,直到符合條件,就是輸出結(jié)果;
(2)把y=7代入代數(shù)式,計算即可;
(3)根據(jù)運算流程結(jié)合需要經(jīng)過兩次運算可得出關(guān)于x的一元一次不等式組,解不等式組即可得出結(jié)論.
(1)當x=2時,y=2×2+5=9>1,所以輸出9;
當x=-3時,y=-3×2+5=-1<1,把x=-1代入,
得-1×2+5=3>1,所以輸出3.
(2)y=7時,2x+5=7,
解得,x=1.
(3)根據(jù)題意
由①得:x<-2,
由②得:.
∴<-2.
科目:初中數(shù)學 來源: 題型:
【題目】某教師為了對學生零花錢的使用進行教育指導,對全班50名學生每人一周內(nèi)的零花錢數(shù)額進行了調(diào)查統(tǒng)計,并繪制了統(tǒng)計表如下:
零花錢數(shù)額(元) | 5 | 10 | 15 | 20 |
學生個數(shù)(個) | a | 15 | 20 | 5 |
請根據(jù)表中的信息,回答以下問題.
(1)求a的值;
(2)求這50名學生每人一周內(nèi)的零花錢額的眾數(shù)、中位數(shù)和平均數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張明和李強兩名運動愛好者周末相約到東湖綠道進行跑步鍛煉.(1)周日早上6點,張明和李強同時從家出發(fā),分別騎自行車和步行到離家距離分別為4.5千米和1.2千米的綠道落雁島入口匯合,結(jié)果同時到達,且張明每分鐘比李強每分鐘多行220米,求張明和李強的速度分別是多少米/分?
(1)兩人到達綠道后約定先跑 6 千米再休息,李強的跑步速度是張明跑步速度的m倍,兩人在同起點,同時出發(fā),結(jié)果李強先到目的地n分鐘.
①當m=12,n=5時,求李強跑了多少分鐘?
②張明的跑步速度為 米/分(直接用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點P是正方形ABCD內(nèi)一點,連接PA、PB、PC.
(1)將△PAB繞點B順時針旋轉(zhuǎn)90°得到△P′CB,若AB=m,PB=n(n<m).求△PAB旋轉(zhuǎn)過程中邊PA掃過區(qū)域(陰影部分)的面積;
(2)若PA= ,PB=2,∠APB=135°,求PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB為等腰三角形,頂點A的坐標(2,),底邊OB在x軸上.將△AOB繞點B按順時針方向旋轉(zhuǎn)一定角度后得△A′O′B,點A的對應(yīng)點A′在x軸上,則點O′的坐標為( 。
A. (,) B. (,) C. (,) D. (,4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀可以增進人們的知識,也能陶冶人們的情操.我們要多閱讀有營養(yǎng)的書.某校對學生的課外閱讀時間進行了抽樣調(diào)查,將收集的數(shù)據(jù)分成A,B,C,D,E五組進行整理,并繪制成如圖所示的統(tǒng)計圖表(圖中信息不完整).
閱讀時間分組統(tǒng)計表
組別 | 閱讀時間x(h) | 人數(shù) |
A | 0≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | b |
D | 30≤x<40 | 140 |
E | x≥40 | c |
請結(jié)合以上信息解答下列問題:
(1)求a,b,c的值;
(2)補全“閱讀人數(shù)分組統(tǒng)計圖”;
(3)估計全校課外閱讀時間在20h以下(不含20h)的學生所占百分比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=30,點M、N分別是射線OB、OA上的動點,點P為∠AOB內(nèi)一點,且OP=8,則△PMN的周長的最小值=___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.
(1)求拋物線的函數(shù)解析式;
(2)求△ABC的面積;
(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com