【題目】如圖,一次函數(shù)與反比例函數(shù)y= 的圖象交于A(1,4),B(4,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)點P是x軸上的一動點,試確定點P使PA+PB最小,并求出點P的坐標.

【答案】
(1)解:將A(1,4)代入y= ,

∴m=4,

∴反比例函數(shù)的解析式為:y=


(2)解:將B(4,n)代入y=

∴n=1,

設C與A關于x軸對稱,

∴C(1,﹣4),

設直線BC的解析式為:y=kx+b,

將C(1,﹣4)和B(4,1)代入y=kx+b,

∴解得

∴一次函數(shù)的解析式為:y= x﹣

令y=0代入y= x﹣

∴x=

∴P( ,0)


【解析】(1)將A代入反比例函數(shù)即可求出m的值.(2)將B代入反比例函數(shù)即可求出n的值,求出點A的關于x軸的對稱點坐標C,然后將BC的解析式求出,令y=0代入AC的解析式即可求出P的坐標.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準碟形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的劇烈為碟高.
(1)拋物線y=x2對應的碟寬為;拋物線y= x2對應的碟寬為;拋物線y=ax2(a>0)對應的碟寬為;拋物線y=a(x﹣3)2+2(a>0)對應的碟寬為;
(2)利用圖(1)中的結論:拋物線y=ax2﹣4ax﹣ (a>0)對應的碟寬為6,求拋物線的解析式.
(3)將拋物線yn=anx2+bnx+cn(an>0)的對應準蝶形記為Fn(n=1,2,3,…),定義F1 , F2 , …..Fn為相似準蝶形,相應的碟寬之比即為相似比.若Fn與Fn1的相似比為 ,且Fn的碟頂是Fn1的碟寬的中點,現(xiàn)在將(2)中求得的拋物線記為y1 , 其對應的準蝶形記為F1
①求拋物線y2的表達式;
②若F1的碟高為h1 , F2的碟高為h2 , …Fn的碟高為hn . 則hn= , Fn的碟寬右端點橫坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在校園文化藝術節(jié)中,九年級一班有1名男生和2名女生獲得美術獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術獎和音樂獎的7名學生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關系.

(1)【發(fā)現(xiàn)證明】
小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖1證明上述結論.
(2)【類比引申】
如圖2,四邊形ABCD中∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足什么關系時,仍有EF=BE+FD
(3)【探究應用】如圖3,在某公園的同一水平面上,四條通道圍成的ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40( ,米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結果取整數(shù),參考數(shù)據(jù): =1.41, =1.73).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實數(shù)根.其中正確的結論有(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點F是AB中點,兩邊FD,F(xiàn)E分別交AC,BC于點D,E兩點,當∠DFE在△ABC內繞頂點F旋轉時(點D不與A,C重合),給出以下個結論:①CD=BE ②四邊形CDFE不可能是正方形 ③△DFE是等腰直角三角形 ④S四邊形CDFE= SABC , 上述結論中始終正確的有(
A.①②③
B.②③④
C.①③④
D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個,藍球1個,現(xiàn)在從中任意摸出一個紅球的概率為
(1)求袋中黃球的個數(shù);
(2)第一次摸出一個球(不放回),第二次再摸出一個球,請用樹狀圖或列表法求兩次摸出的都是紅球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于點O.
(1)求邊AB的長;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉,其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F(xiàn),連接EF與AC相交于點G. ①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉過程中,當點E為邊BC的四等分點時(BE>CE),求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以O(0,0)、A(1,-1)、B(2,0)為頂點,構造平行四邊形,下列各點中不能作為平行四邊形第四個頂點坐標的是(  。

A.(3,-1)
B.(-1,-1)
C.(1,1)
D.(-2,-1)

查看答案和解析>>

同步練習冊答案