【題目】如圖,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定四邊形ABCD為平行四邊形的是( )

A. AB∥CD,AD∥BC B. OA=OC,OB=OD C. AD=BC,AB∥CD D. AB=CD,AD=BC

【答案】C

【解析】

根據(jù)平行四邊形的判定方法,結(jié)合圖形逐項(xiàng)判定就可以得到答案

A.兩組對(duì)邊分別平行的四邊形是平行四邊形,能判定四邊形ABCD是平行四邊形,選項(xiàng)A錯(cuò)誤;

B.對(duì)角線互相平分的四邊形是平行四邊形,能判定四邊形ABCD是平行四邊形,選項(xiàng)B錯(cuò)誤;

C.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形不一定是平行四邊形,可能是等腰梯形,選項(xiàng)C正確;

D.兩組對(duì)邊分別相等的四邊形是平行四邊形,能判定四邊形ABCD是平行四邊形,選項(xiàng)D錯(cuò)誤。

故選C。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在ABC中,∠BCA=90°,CD是邊AB上的中線,分別過(guò)點(diǎn)C,D作BA,BC的平行線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE.

(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB,AC的垂直平分線分別交BCD,E兩點(diǎn),垂足分別是M,N.

(1)若△ADE的周長(zhǎng)是10,求BC的長(zhǎng);

(2)若∠BAC=100°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABD、△CDE是兩個(gè)等邊三角形,連接BC、BE.若DBC=30°,BD=2,BC=3,則BE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一次函數(shù)y=kx+4(k≠0)的圖象稱為直線l.

(1)若直線l經(jīng)過(guò)點(diǎn)(2,0),直接寫(xiě)出關(guān)于x的不等式kx+4>0的解集;

(2)若直線l經(jīng)過(guò)點(diǎn)(3,﹣2),求這個(gè)函數(shù)的表達(dá)式;

(3)若將直線l向右平移2個(gè)單位長(zhǎng)度后經(jīng)過(guò)點(diǎn)(5,5),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y= x﹣ 與矩形ABCO的邊OC、BC分別交于點(diǎn)E、F,已知OA=3,OC=4,則△CEF的面積是( 。

A.6
B.3
C.12
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在今年法國(guó)網(wǎng)球公開(kāi)賽中,我國(guó)選手李娜在決賽中成功擊敗對(duì)手奪冠,稱為獲得法國(guó)網(wǎng)球公開(kāi)賽冠軍的亞洲第一人.某班體育委員就本班同學(xué)對(duì)該屆法國(guó)網(wǎng)球公開(kāi)賽的了解程度進(jìn)行全面調(diào)查統(tǒng)計(jì),收集數(shù)據(jù)后繪制了兩幅不完整的統(tǒng)計(jì)圖,如圖(1)和圖(2).根據(jù)圖中的信息,解答下列問(wèn)題:
(1)該班共有名學(xué)生;
(2)在圖(1)中,“很了解”所對(duì)應(yīng)的圓心角的度數(shù)為;
(3)把圖(2)中的條形圖形補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.動(dòng)點(diǎn)P、Q都從點(diǎn)C出發(fā),點(diǎn)P沿C→B方向做勻速運(yùn)動(dòng),點(diǎn)Q沿C→D→A方向做勻速運(yùn)動(dòng),當(dāng)P、Q其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求CD的長(zhǎng);
(2)若點(diǎn)P以1cm/s速度運(yùn)動(dòng),點(diǎn)Q以2 cm/s的速度運(yùn)動(dòng),連接BQ、PQ,設(shè)△BQP面積為S(cm2),點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(s),求S與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
(3)若點(diǎn)P的速度仍是1cm/s,點(diǎn)Q的速度為acm/s,要使在運(yùn)動(dòng)過(guò)程中出現(xiàn)PQ∥DC,請(qǐng)你直接寫(xiě)出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,給出下列四個(gè)條件,AB=DE,BC=EFB=E,C=F,從中任選三個(gè)條件能使ABCDEF的共有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案