【題目】如圖,矩形ABCD中,AE⊥BD于點(diǎn)E,CF平分∠BCD,交EA的延長線于點(diǎn)F,且BC=4,CD=2,給出下列結(jié)論:①∠BAE=∠CAD;②∠DBC=30°;③AE= ;④AF=2 ,其中正確結(jié)論的個(gè)數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】C
【解析】解:在矩形ABCD中,∵∠BAD=90°, ∵AE⊥BD,
∴∠AED=90°,
∴∠ADE+∠DAE=∠DAE+∠BAE=90°,
∴∠BAE=∠ADB,
∵∠CAD=∠ADB,
∴∠BAE=∠CAD,故①正確;
∵BC=4,CD=2,
∴tan∠DBC= = ,
∴∠DBC≠30°,故②錯(cuò)誤;
∵BD= =2 ,
∵AB=CD=2,AD=BC=4,
∵△ABE∽△DBA,
,

∴AE= ;故③正確;
∵CF平分∠BCD,
∴∠BCF=45°,
∴∠ACF=45°﹣∠ACB,
∵AD∥BC,
∴∠DAC=∠BAE=∠ACB,
∴∠EAC=90°﹣2∠ACB,
∴∠EAC=2∠ACF,
∵∠EAC=∠ACF+∠F,
∴∠ACF=∠F,
∴AF=AC,
∵AC=BD=2 ,
∴AF=2 ,故④正確;
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用矩形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握矩形的四個(gè)角都是直角,矩形的對角線相等;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形紙片ABC中,AB=AC,∠A=50°,折疊該紙片,使點(diǎn)A落在點(diǎn)B處,折痕為DE,則∠CBE=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:﹣24 +|1﹣4sin60°|+(π﹣ 0
(2)解方程:2x2﹣4x﹣1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一枚棋子放在邊長為1個(gè)單位長度的正六邊形ABCDEF的頂點(diǎn)A處,通過摸球來確定該棋子的走法,其規(guī)則是:在一只不透明的袋子中,裝有3個(gè)標(biāo)號(hào)分別為1、2、3的相同小球,攪勻后從中任意摸出1個(gè),記下標(biāo)號(hào)后放回袋中并攪勻,再從中任意摸出1個(gè),摸出的兩個(gè)小球標(biāo)號(hào)之和是幾棋子就沿邊按順時(shí)針方向走幾個(gè)單位長度. 棋子走到哪一點(diǎn)的可能性最大?求出棋子走到該點(diǎn)的概率.(用列表或畫樹狀圖的方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.(π﹣3)0=1
B.=±3
C.21=﹣2
D.(﹣a23=a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD與過點(diǎn)C的切線互相垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E,連接CE,CB.
(1)求證:CE=CB;
(2)若AC=2 ,CE= ,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點(diǎn)D,以AD為邊作等邊△ADE,延長ED交BC于點(diǎn)F,BC=2 ,則圖中陰影部分的面積為 . (結(jié)果不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1=A1A2=1,以O(shè)A2為直角邊作第二個(gè)等腰直角三角形OA2A3 , 以O(shè)A3為直角邊作第三個(gè)等腰直角三角形OA3A4 , …,依此規(guī)律,得到等腰直角三角形OA2017A2018 , 則點(diǎn)A2017的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】烏江快鐵大橋是快鐵渝黔線的一項(xiàng)重要工程,由主橋AB和引橋BC兩部分組成(如圖所示),建造前工程師用以下方式做了測量;無人機(jī)在A處正上方97m處的P點(diǎn),測得B處的俯角為30°(當(dāng)時(shí)C處被小山體阻擋無法觀測),無人機(jī)飛行到B處正上方的D處時(shí)能看到C處,此時(shí)測得C處俯角為80°36′.
(長度均精確到1m,參考數(shù)據(jù): ≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)

(1)求主橋AB的長度;
(2)若兩觀察點(diǎn)P、D的連線與水平方向的夾角為30°,求引橋BC的長.

查看答案和解析>>

同步練習(xí)冊答案