如圖,在Rt△ABC中,點(diǎn)P由C點(diǎn)出發(fā)以1cm/s向A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā)以2cm/s向C點(diǎn)勻速移動(dòng),已知AC=4cm,BC=12cm,
(1)若記Q點(diǎn)的移動(dòng)時(shí)間為t,試用含有t的代數(shù)式表示Rt△PCQ與四邊形PQBA的面積;
(2)當(dāng)P、Q處在什么位置時(shí),四邊形PQBA的面積最小,并求最小值.
(1)根據(jù)題意,CQ=12-2t,CP=t
∴S△PCQ=
1
2
t(12-2t)=-t2+6t
∴S四邊形PQBA=S△ABC-S△PCQ=
1
2
×4×12-(-t2+6t)=t2-6t+24=(t-3)2+15;

(2)∵1>0,
∴函數(shù)有最小值,
t=3時(shí),S四邊形PQBA最小,
即PC=3cm,QC=12-2t=6cm,
四邊形PQBA的面積最。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形OABC是矩形,OA=4,OC=8,將矩形OABC沿直線AC折疊,使點(diǎn)B落在D處,AD交OC于E.
(1)求OE的長(zhǎng);
(2)求過(guò)O,D,C三點(diǎn)拋物線的解析式;
(3)若F為過(guò)O,D,C三點(diǎn)拋物線的頂點(diǎn),一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿射線AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間t(秒)為何值時(shí),直線PF把△FAC分成面積之比為1:3的兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知:拋物線y=ax2+bx-4(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,A、B兩點(diǎn)的坐標(biāo)分別為A(-6,0)、B(2,0).
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)已知在拋物線的對(duì)稱軸上存在一點(diǎn)P,使得PB+PC的值最小,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過(guò)點(diǎn)D作DEPC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2-2mx+n+1的頂點(diǎn)A在x軸負(fù)半軸上,與y軸交于點(diǎn)B,C是拋物線上一點(diǎn),且點(diǎn)C的橫坐標(biāo)為1,AC=3
10

(1)求拋物線的函數(shù)關(guān)系式;
(2)若D是拋物線上一點(diǎn),直線BD經(jīng)過(guò)第一、二、四象限,且原點(diǎn)O到直線BD的距離為
8
5
5
,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,直線BD上是否存在點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△AOB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每個(gè)月可賣(mài)出200件,如果每件商品的售價(jià)上漲1元,則每個(gè)月少買(mǎi)10件(每件售價(jià)不能高于72元),設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大月利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P是拋物線y1=x2-6x+9對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),在對(duì)稱軸左邊的直線x=t平行于y軸,分別與直線y2=x、拋物線y2交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某隧道橫斷面由拋物線與矩形的三邊組成,尺寸如圖所示.
(1)以隧道橫斷面拋物線的頂點(diǎn)為原點(diǎn),以拋物線的對(duì)稱軸為y軸,建立直角坐標(biāo)系,求該拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)某卡車空車時(shí)能通過(guò)此隧道,現(xiàn)裝載一集裝箱箱寬3m,車與箱共高4.5m,此車能否通過(guò)隧道?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=-
4
3
x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、C和點(diǎn)B(-1,0).
(1)求該二次函數(shù)的關(guān)系式;
(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為M,求四邊形AOCM的面積;
(3)有兩動(dòng)點(diǎn)D、E同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)D以每秒
3
2
個(gè)單位長(zhǎng)度的速度沿折線OAC按O?A?C的路線運(yùn)動(dòng),點(diǎn)E以每秒4個(gè)單位長(zhǎng)度的速度沿折線OCA按O?C?A的路線運(yùn)動(dòng),當(dāng)D、E兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)D、E同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△ODE的面積為S.
①請(qǐng)問(wèn)D、E兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在DEOC,若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,那么S0=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,當(dāng)x=2時(shí),拋物線y=ax2+bx+c取得最小值-1,并且與y軸交于點(diǎn)C(0,3),與x軸交于點(diǎn)A,B(A在B的右邊).
(1)求拋物線的解析式.
(2)D是線段AC的中點(diǎn),E為線段AC上的一動(dòng)點(diǎn)(不與A,C重合),過(guò)點(diǎn)E作y軸的平行線EF與拋物線交于點(diǎn)F.問(wèn):是否存在△DEF與△AOC相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△APD為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)p的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案