【題目】如圖,AN是M的直徑,NBx軸,AB交M于點C.

(1)若點A(0,6),N(0,2),ABN=30°,求點B的坐標(biāo);

(2)若D為線段NB的中點,求證:直線CD是M的切線.

【答案】(1) B(,2).(2)證明見解析.

【解析】

試題分析:(1)在RtABN中,求出AN、AB即可解決問題;

(2)連接MC,NC.只要證明MCD=90°即可

試題解析:(1)A的坐標(biāo)為(0,6),N(0,2),

AN=4,

∵∠ABN=30°,ANB=90°,

AB=2AN=8,

由勾股定理可知:NB=

B(,2).

(2)連接MC,NC

AN是M的直徑,

∴∠ACN=90°,

∴∠NCB=90°,

在RtNCB中,D為NB的中點,

CD=NB=ND,

∴∠CND=NCD,

MC=MN,

∴∠MCN=MNC,

∵∠MNC+CND=90°,

∴∠MCN+NCD=90°,

即MCCD.

直線CD是M的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x621的對稱軸是直線_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】100個數(shù)之和為2001,把第一個數(shù)減1,第二個數(shù)加2,第三個數(shù)減3,,第一百個數(shù)加100,則所得新數(shù)之和為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

①相等的角是對頂角;②同旁內(nèi)角互補

③負(fù)數(shù)沒有算術(shù)平方根;④平方根等于它本身的數(shù)是01

其中假命題的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的兩條對角線AC,BD相交于點O,點E在BD上,且BE=CD,則∠BEC的度數(shù)為(
A.22.5°
B.60°
C.67.5°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點A表示的數(shù)是﹣1,點B到點A的距離為2個單位,則B點表示的數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組線段中,不能構(gòu)成三角形的是(

A.5、7、13B.710、13C.7、24、25D.3、45

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)運甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等式0□1=﹣1成立,則□內(nèi)的運算符號為(  )
A.+
B.﹣
C.×
D.÷

查看答案和解析>>

同步練習(xí)冊答案