如圖,⊙O的直徑AB的長是12,CD是⊙O的弦,AB⊥CD,垂足為E,如果∠BOC=60°,則BE的長度為( 。
A.3B.3.5C.4D.5
A.

試題分析::先根據(jù)⊙O的直徑AB的長是12求出OC的長,再由AB⊥CD,垂足為E,∠BOC=60°可得出∠OCE的度數(shù),根據(jù)直角三角形的性質(zhì)可得出OE的長,由BE=OB-OE即可得出結(jié)論.
∵⊙O的直徑AB的長是12,
∴OC=OB=6,
∵AB⊥CD,垂足為E,∠BOC=60°,
∴∠OCE=30°,
∴OE=OC=×6=3,
∴BE=OB-OE=6-3=3.
故選A.
考點: 1.垂徑定理;2.含30度角的直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在⊙O中,弦交于點,.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點E在△ABC的邊AB上,∠C=90°,∠BAC的平分線交BC于點D,且D在以AE為直徑的⊙O上.

(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,CD=4,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的網(wǎng)格圖中,每小格都是邊長為1的正方形,△ABC的三個頂點都在格點上,在建立直角坐標(biāo)系后,點C的坐標(biāo)(-1,2)

(1)畫出△ABC繞點D(0,5)逆時針旋轉(zhuǎn)90°后的△A1B1C1,
(2)寫出A1,C1的坐標(biāo).
(3)求點A旋轉(zhuǎn)到A1所經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=20cm,BC=4cm,點P從A開始沿折線A﹣B﹣C﹣D以4cm/s的速度移動,點Q從C開始沿CD邊以1cm/s的速度移動,如果點P、Q分別從A、C同時出發(fā),當(dāng)其中一點到達(dá)D時,另一點也隨之停止運動.設(shè)運動時間為t(s).

(1)t為何值時,四邊形APQD為矩形;
(2)如圖,如果⊙P和⊙Q的半徑都是2cm,那么t為何值時,⊙P和⊙Q外切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果一個圓錐的母線長為4,底面半徑為1,那么這個圓錐的側(cè)面積為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,用兩道繩子捆扎著三瓶直徑均為6cm的瓶子,若不計繩子接頭,則捆繩總長為__________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為⊙O的直徑,點C,D在⊙O上.若∠AOD=30°,則∠BCD=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,點C,D是圓上兩點,∠AOC=100°,則∠D=_______.

查看答案和解析>>

同步練習(xí)冊答案