精英家教網 > 初中數學 > 題目詳情
如圖,正方體邊長為1cm,現(xiàn)有繩子從A出發(fā),沿正方形表面到達F處,問繩子最短是多少cm?
分析:把立體圖形展開平面圖形,根據兩點之間線段最短即可得到AF為所求,根據勾股定理計算即可.
解答:解:平面展開圖如圖所示:AD=1cm,DF=2cm,
在Rt△ADF中,∠ADF=90°,
∵AD2+DF2=AF2,
∴AF2=5,
∴AF=
5
,
答:繩子的最短長度是
5
cm.
點評:本題考查了平面展開-最短路徑問題,先根據題意把立體圖形展開成平面圖形后,再確定兩點之間的最短路徑.一般情況是兩點之間,線段最短.在平面圖形上構造直角三角形解決問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,正方體邊長為30cm,B點距離C點10cm,有一只螞蟻沿著正方體表面從A點爬到B點,其爬行速度為每秒2cm,則這只螞蟻最快多長時間可爬到B點?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,正方體邊長為1cm,現(xiàn)有繩子從A出發(fā),沿正方形表面到達F處,問繩子最短是多少cm?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,正方體邊長為30cm,B點距離C點10cm,有一只螞蟻沿著正方體表面從A點爬到B點,其爬行速度為每秒2cm,則這只螞蟻最快多長時間可爬到B點?
精英家教網

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,正方體邊長為1cm,現(xiàn)有繩子從A出發(fā),沿正方形表面到達F處,問繩子最短是多少cm?
精英家教網

查看答案和解析>>

同步練習冊答案