【題目】已知,矩形ABCD中,延長BCE,連接DE,FDE的中點,連結(jié)AF、CFAFCF.

求證:(1)ADF=BCF

(2)BD=AD+CE.

【答案】見解析

【解析】

1)根據(jù)F為中點得到CF=DF=EF,再得到∠CDF=DCF,再利用矩形的性質(zhì)即可求解;

2)先根據(jù)全等三角形的判定與性質(zhì)得到△BDE為等腰三角形,再根據(jù)線段之間的關系即可證明.

1)在矩形ABCD中,

ADBC,∠ADC=∠BCD90°,

∴∠DCE90°,

RtDCE中,

FDE中點,

DFCF,

∴∠CDF=DCF,

∴∠ADC+∠CDF=∠BCD+∠DCF,

即∠ADF=∠BCF;

2)連接BF,

在△AFD和△BFC

∴△ADF≌△BCF,

∴∠AFD=BFC,

AF⊥CF,

∴∠AFD+AFB =BFC+AFB=90°

BFDE,

FDE中點,

在△BDF和△BEF

,

∴△ADF≌△BCF,

BD=BE

BE=BC+CE

BD=BC+CE= AD+CE.

BD=AD+CE.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,已知點A-3,3),B-5,1),C-2,0),Pa,b)是△ABC的邊AC上任意一點,△ABC經(jīng)過平移后得到△A1B1C1,點P的對應點為P1a+6,b-2).

1)直接寫出點A1B1,C1的坐標.

2)在圖中畫出△A1B1C1

3)連接AA1,求△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:小明遇到這樣一個問題:已知:在ABC中,ABBC,AC三邊的長分別為,求ABC的面積.小明是這樣解決問題的:如圖①所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出ABC的面積.他把這種解決問題的方法稱為構(gòu)圖法.請回答:

1)圖1ABC的面積為   ;

參考小明解決問題的方法,完成下列問題:

2)圖2是一個6×6的正方形網(wǎng)格(每個小正方形的邊長為1).

①利用構(gòu)圖法在答卷的圖2中畫出三邊長分別為、2、的格點DEF;

②計算DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,EDC邊上一個動點,FAB邊上一點,∠AEF=30°.設DE=x,圖中某條線段長為y,yx滿足的函數(shù)關系的圖象大致如圖所示,則這條線段可能是圖中的(  ).

A. 線段EC B. 線段AE C. 線段EF D. 線段BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,直線l1:y=2x+3與直線l2:y=kx+b的交點Ay軸上,直線l3:y=x與直線l1相交于點B與直線l2相交于點C1,1.

1)求直線l2的解析式和B點的坐標;

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 直線x軸、y軸分別交于點A和點B,點C、D分別為線段ABOB的中點, POA上一動點, PC+PD最小時, P的坐標為(

A.-4,0B.-10C.(-2,0)D.(-3,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某乳品公司向某地運輸一批牛奶,由鐵路運輸每千克需運費0.60元,由公路運輸,每千克需運費0.30元,另需補助600元

(1)設該公司運輸?shù)倪@批牛奶為x千克,選擇鐵路運輸時,所需運費為y1元,選擇公路運輸時,所需運費為y2元,請分別寫出y1、y2與x之間的關系式;

(2)若公司只支出運費1500元,則選用哪種運輸方式運送的牛奶多?若公司運送1500千克牛奶,則選用哪種運輸方式所需費用較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一條河的兩岸BC與DE互相平行,兩岸各有一排景觀燈(圖中黑點代表景觀燈),每排相鄰兩景觀燈的間隔都是10 m,在與河岸DE的距離為16 m的A處(AD⊥DE)看對岸BC,看到對岸BC上的兩個景觀燈的燈桿恰好被河岸DE上兩個景觀燈的燈桿遮。影禗E上的兩個景觀燈之間有1個景觀燈,河岸BC上被遮住的兩個景觀燈之間有4個景觀燈,求這條河的寬度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蔬菜基地種植某種蔬菜,由市場行情分析知,1月份至6月份這種蔬菜的上市時間(月份)與市場售價(元/千克)的關系如下表:

上市時間(月份)

1

2

3

4

5

6

市場售價(元/千克)

10.5

9

7.5

6

4.5

3

這種蔬菜每千克的種植成本(元/千克)與上市時間(月份)滿足一個函數(shù)關系,這個函數(shù)的圖象是拋物線的一段(如圖).

1)寫出上表中表示的市場售價(元/千克)關于上市時間(月份)的函數(shù)關系式;

2)若圖中拋物線過點,寫出拋物線對應的函數(shù)關系式;

3)由以上信息分析,哪個月上市出售這種蔬菜每千克的收益最大?最大值為多少?(收益=市場售價-種植成本)

查看答案和解析>>

同步練習冊答案