【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=8.射線BD為∠ABC的平分線,交AC于點(diǎn)D.動(dòng)點(diǎn)P以每秒2個(gè)單位長度的速度從點(diǎn)B向終點(diǎn)C運(yùn)動(dòng).作PE⊥BC交射線BD于點(diǎn)E.以PE為邊向右作正方形PEFG.正方形PEFG與△BDC重疊部分圖形的面積為S.
(1)求tan∠ABD的值.
(2)當(dāng)點(diǎn)F落在AC邊上時(shí),求t的值.
(3)當(dāng)正方形PEFG與△BDC重疊部分圖形不是三角形時(shí),求S與t之間的函數(shù)關(guān)系式.
【答案】(1)tan∠ABD=;(2);(3)①當(dāng)時(shí),;②當(dāng)時(shí),;③當(dāng)時(shí),.
【解析】
(1)過點(diǎn)D作DH⊥BC于點(diǎn)H,可得△ABD≌△HBD,所以CH=BC-AB=4.再由三角形相似即可求出DH=AD=3.根據(jù)三角函數(shù)定義即可解題.
(2)由(1)得BP=2PE,所以BP=2t,PE=PG=EF=FG=t,當(dāng)點(diǎn)F落在AC邊上時(shí),FG=CG,即可得到方程求出t.
(3)當(dāng)正方形PEFG與△BDC重疊部分圖形不是三角形時(shí),分三種情況分別求出S與t之間的函數(shù)關(guān)系式,①當(dāng)時(shí),F點(diǎn)在三角形內(nèi)部或邊上,②當(dāng)時(shí),如圖:E點(diǎn)在三角形內(nèi)部,F點(diǎn)在外部,此時(shí)重疊部分圖形的面積S=S正方形-S△FMN,③當(dāng)時(shí),重疊部分面積為梯形MPGN面積,
解:(1)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=8
根據(jù)勾股定理得BC=10
過點(diǎn)D作DH⊥BC于點(diǎn)H
∵△ABD≌△HBD,
∴BH=AH=6,DH=AD,
∴CH=4,
∵△ABC∽△HDC,
∴,
∴,
∴DH=AD=3,
∴tan∠ABD==,
(2)由(1)可知BP=2PE,依題意得:BP=2t,PE=PG=EF=FG=t,CG=10-3t,
當(dāng)點(diǎn)F落在AC邊上時(shí),FG=CG,
即,
,
(3)①當(dāng)時(shí),F點(diǎn)在三角形內(nèi)部或邊上,正方形PEFG在△BDC內(nèi)部,
此時(shí)重疊部分圖形的面積為正方形面積:,
②當(dāng)時(shí),如圖:E點(diǎn)在三角形內(nèi)部,F點(diǎn)在外部,
∵GC=10-3t,NG=CG=(10-3t),FN=t-(10-3t),FM= ,
此時(shí)重疊部分圖形的面積S=S正方形-S△FMN
,
③當(dāng)時(shí),重疊部分面積為梯形MPGN面積,如圖:
∵GC=10-3t,NG=CG=(10-3t),PC=10-2t,PM=,
∴,
綜上所述:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價(jià)為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價(jià)x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設(shè)這種電子鞭炮每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種電子鞭炮銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會(huì)發(fā)現(xiàn)這其中還有更多的結(jié)論.
(發(fā)現(xiàn)與證明)ABCD中,AB≠BC,將△ABC沿AC翻折至△AB`C,連結(jié)B`D.
結(jié)論1:△AB`C與ABCD重疊部分的圖形是等腰三角形;結(jié)論2:B`D∥AC;
(1)請證明結(jié)論1和結(jié)論2;
(應(yīng)用與探究)
(2)在ABCD中,已知BC=2,∠B=45°,將△ABC沿AC翻折至△AB`C,連接B`D若以A、C、D、B`為頂點(diǎn)的四邊形是正方形,求AC的長(要求畫出圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,AD是△ABC的角平分線,且AD=BD,
(1)求證:△CDA∽△CAB;
(2)若AD=6,CD=5,求AC的值;
(3)如圖2,延長AD至E,使AE=AB,過E點(diǎn)作EF∥AB,交AC于點(diǎn)F,試探究線段EF
與線段AD的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在開展“書香校園”活動(dòng)期間,對學(xué)生課外閱讀的喜好進(jìn)行抽樣調(diào)查(每人只選一種書籍),將調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生人數(shù)為 人,扇形統(tǒng)計(jì)圖中m的值為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)如果這所學(xué)校要添置學(xué)生課外閱讀的書籍1500冊,請你估計(jì)“科普”類書籍應(yīng)添置多少冊比較合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=,AF=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)平面內(nèi)將一副三角板按如圖1所示擺放,∠EBC= °;
(2)平面內(nèi)將一副三角板按如圖2所示擺放,若∠EBC=165°,那么∠α= °;
(3)平面內(nèi)將一副三角板按如圖3所示擺放,∠EBC=115°,求∠α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
【答案】D
【解析】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,與圖象不符,故A選項(xiàng)錯(cuò)誤;
B.由函數(shù)y=mx+m的圖象可知m<0,對稱軸為x=<0,則對稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項(xiàng)錯(cuò)誤;
C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開口方向朝下,與圖象不符,故C選項(xiàng)錯(cuò)誤;
D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,對稱軸為x=<0,則對稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項(xiàng)正確;
故選:D.
【題型】單選題
【結(jié)束】
10
【題目】如圖,已知菱形ABCD的周長為16,面積為,E為AB的中點(diǎn),若P為對角線BD上一動(dòng)點(diǎn),則EP+AP的最小值為( 。
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com