如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )

A.4cm
B.6cm
C.8cm
D.10cm
【答案】分析:先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再對構成△DEB的幾條邊進行變換,可得到其周長等于AB的長.
解答:解:∵AD平分∠CAB交BC于點D
∴∠CAD=∠EAD
∵DE⊥AB
∴∠AED=∠C=90
∵AD=AD
∴△ACD≌△AED.(AAS)
∴AC=AE,CD=DE
∵∠C=90°,AC=BC
∴∠B=45°
∴DE=BE
∵AC=BC,AB=6cm,
∴2BC2=AB2,即BC===3
∴BE=AB-AE=AB-AC=6-3,
∴BC+BE=3+6-3=6cm,
∵△DEB的周長=DE+DB+BE=BC+BE=6(cm).
另法:證明三角形全等后,
∴AC=AE,CD=DE.
∵AC=BC,
∴BC=AE.
∴△DEB的周長=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.
故選B.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、AAS、SAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案