【題目】已知點(diǎn)A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函數(shù)y=(k<0)的圖象上,則( 。
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3
【答案】C
【解析】
先根據(jù)函數(shù)解析式中的比例系數(shù)k確定函數(shù)圖象所在的象限,再根據(jù)各象限內(nèi)點(diǎn)的坐標(biāo)特點(diǎn)及函數(shù)的增減性解答.
∵在反比例函數(shù)y=中,k<0,
∴此函數(shù)圖象在二、四象限,
∵﹣3<﹣2<0,
∴點(diǎn)A(﹣3,y1),B(﹣2,y2)在第二象限,
∴y1>0,y2>0,
∵函數(shù)圖象在第二象限內(nèi)為增函數(shù),﹣3<﹣2<0,
∴0<y1<y2.
∵3>0,
∴C(3,y3)點(diǎn)在第四象限,
∴y3<0,
∴y1,y2,y3的大小關(guān)系為y3<y1<y2.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知D是等邊△ABC邊AB上的一點(diǎn),現(xiàn)將△ABC折疊,使點(diǎn)C與D重合,折痕為EF,點(diǎn)E、F分別在AC和BC上.如果AD:DB=1:2,則CE:CF的值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:
(1)求該二次函數(shù)的表達(dá)式;
(2)該二次函數(shù)圖像關(guān)于x軸對(duì)稱的圖像所對(duì)應(yīng)的函數(shù)表達(dá)式 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC是等腰直角三角形,∠BAC=90°,將△ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)得到△A′B′C,記旋轉(zhuǎn)角為α,當(dāng)90°<α<180°時(shí),作A′D⊥AC,垂足為D,A′D與B′C交于點(diǎn)E.
(1)如圖1,當(dāng)∠CA′D=15°時(shí),作∠A′EC的平分線EF交BC于點(diǎn)F.
①寫出旋轉(zhuǎn)角α的度數(shù);
②求證:EA′+EC=EF;
(2)如圖2,在(1)的條件下,設(shè)P是直線A′D上的一個(gè)動(dòng)點(diǎn),連接PA,PF,若AB=,求線段PA+PF的最小值.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)以原點(diǎn)O為位似中心,相似比為1∶2,在y軸的左側(cè),畫出△ABC放大后的圖形△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)若點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫出經(jīng)過(guò)(1)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2在第一象限內(nèi)經(jīng)過(guò)的整數(shù)點(diǎn)(橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))依次為A1,A2,A3…An,將拋物線y=x2沿直線L:y=x向上平移,得到一系列拋物線,且滿足下列條件:①拋物線的頂點(diǎn)M1,M2,M3,…Mn都在直線L:y=x上;②拋物線依次經(jīng)過(guò)點(diǎn)A1,A2,A3…An,則頂點(diǎn)M2020的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將小正方形AEFG繞大正方形ABCD的頂點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度α(其中0°≤α≤90°),連接BG、DE相交于點(diǎn)O,再連接AO、BE、DG.王凱同學(xué)在探究該圖形的變化時(shí),提出了四個(gè)結(jié)論:
①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中結(jié)論正確的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC分別交AC的延長(zhǎng)線于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)若AC=8,CE=4,求弧BD的長(zhǎng).(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在所給網(wǎng)格圖(每小格均為邊長(zhǎng)△ABC是1的正方形)中完成下列各題:
(1)畫出格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)關(guān)于直線DE對(duì)稱的△A1B1C1;
(2)畫出格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90度的△A2B2C2;
(3)在DE上畫出點(diǎn)M,使MA+MC最。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com