如圖(1),AB是⊙O的直徑,射線AT⊥AB,點P是射線AT上的一個動點(P與A不重合),PC與⊙O相切于C,過C作CE⊥AB于E,連接BC并延長BC交AT于點D,連接PB交CE于F.
(1)請你寫出PA、PD之間的關系式,并說明理由;
(2)請你找出圖中有哪些三角形的面積被PB分成兩等分,并加以證明;
(3)設過A、C、D三點的圓的半徑是R,當CF=
1
4
R時,求∠APC的度數(shù),并在圖(2)中作出點P.(要求尺規(guī)作圖,不寫作法,但要保留作圖痕跡)
(1)如圖,連接AC,
∵AT⊥AB,AB是⊙O的直徑
∴AT是⊙O的切線
又PC是⊙O的切線
∴PA=PC
∴∠PAC=∠PCA
∵AB是⊙O的直徑
∴∠ACB=90°
∴∠PAC+∠ADC=90°,∠PCA+∠PCD=90°
∴∠ADC=∠PCD
所以PD=PC=PA;

(2)由(1)知PD=PA
∴△ABD被PB分成面積相等的兩個三角形
∵AT⊥AB,CE⊥AB
∴ATCE
∴CF:PD=BF:BP,EF:PA=BF:BP
所以CF:PD=EF:PA
所以CF=EF
可見△CEB也被PB分成面積相等的兩個三角形;

(3)由(1)知PA=PC=PD
∴PA是△ACD的外接圓的半徑,即PA=R
由(2)知,CF=EF,而CF=
1
4
R
∴EF=
1
4
PA
所以
EF
PA
=
1
4

∵EFAT
BE
AB
=
EF
PA
=
1
4

∴CE=
3
BE
在Rt△ACE中
∵tan∠CAE=
3
3

∴∠CAE=30°
∴∠PAC=90°-∠CAE=60°
而PA=PC
∴△PAC是等邊三角形
∴∠APC=60°
P點的作圖方法見圖.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是半圓O的直徑,點C是⊙O上一點(不與A,B重合),連接AC,BC,過點O作ODAC交BC于點D,在OD的延長線上取一點E,連接EB,使∠OEB=∠ABC.
(1)求證:BE是⊙O的切線;
(2)若OA=10,BC=16,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙O上一點,AD垂直于過點C的直線,垂足為D,且AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若AC=2
6
,AD=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O的直徑AB=4,C為圓周上一點,AC=2,過點C作⊙O的切線DC,P點為優(yōu)弧
CBA
上一動點(不與A、C重合).
(1)求∠APC與∠ACD的度數(shù);
(2)當點P移動到CB弧的中點時,求證:四邊形OBPC是菱形.
(3)P點移動到什么位置時,△APC與△ABC全等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法正確的是( 。
A.與圓有公共點的直線是圓的切線
B.到圓心距離等于圓的半徑的直線是圓的切線
C.垂直于圓的半徑的直線是圓的切線
D.過圓的半徑外端的直線是圓的切線

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是Rt△ABC中以直角邊AB為直徑的圓,⊙O與斜邊AC交于D,過D作DH⊥AB于H,又過D作直線DE交BC于點E,使∠HDE=2∠A.
求證:(1)DE是⊙O的切線;(2)OE是Rt△ABC的中位線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

以點P(1,2)為圓心,r為半徑畫圓,與坐標軸恰好有三個交點,則r=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA,PB是⊙O的兩條切線,A,B分別是切點,點C是
AB
上任意一點,連接OA,OB,CA,CB,∠P=70°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線AB、CD相交于點O,∠AOC=30°,半徑為1cm的⊙P的圓心在直線AB上,且與點O的距離為6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移動,那么______秒種后⊙P與直線CD相切.

查看答案和解析>>

同步練習冊答案