△ABC中,有一內(nèi)角為36°,過頂點A的直線AD將△ABC分成2個等腰三角形,則滿足上述條件的不同形狀(相似的認為是同一形狀)的△ABC最多有    個.
【答案】分析:利用36°的角是底角,可以作出角分別為36°、36°+54°,54°和36°、18°、126°的三角形,將36°的角分為24°和
12°,構(gòu)造等腰三角形,再進行拼接,又可構(gòu)成三角為36°、12°、132°的三角形.
解答:解:如圖所示:

綜上:共有5種滿足上述的不同形狀的三角形.
故答案是:5.
點評:本題考查了三角形的邊角關(guān)系.培養(yǎng)學(xué)生的空間想象能力,重視知識的發(fā)生過程,讓學(xué)生體驗學(xué)習(xí)的過程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、我們知道:直角三角形斜邊上的中線等于斜邊的一半,說明斜邊上的中線可把直角三角形分成兩個等腰三角形(圖①).又比如,頂角為36°的等腰三角形也能分成兩個等腰三角形(圖②).
(1)試試看,你能把圖③、圖④、圖⑤中的三角形分成兩個等腰三角形嗎?
(2)△ABC中,有一內(nèi)角為36°,過某一頂點的直線將△ABC分成兩個等腰三角形,則滿足上述條件的不同形狀(相似的認為是同一形狀)的△ABC最多有5種,除了圖②、圖③中的兩種,還有三種,請你畫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

△ABC中,有一內(nèi)角為36°,過頂點A的直線AD將△ABC分成2個等腰三角形,則滿足上述條件的不同形狀(相似的認為是同一形狀)的△ABC最多有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們知道:直角三角形斜邊上的中線等于斜邊的一半,說明斜邊上的中線可把直角三角形分成兩個等腰三角形(圖①)。又比如,頂角為36°的等腰三角形也能分成兩個等腰三角形(圖②)。

【小題1】試試看,你能把圖③、圖④、圖⑤中的三角形分成兩個等腰三角形嗎
【小題2】△ABC中,有一內(nèi)角為36°,過某一頂點的直線將△ABC分成兩個等腰三角形,則滿足上述條件的不同形狀(相似的認為是同一形狀)的△ABC最多有5種,除了圖②、圖③中的兩種,還有三種,請你畫出來

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省中考考前模擬測試數(shù)學(xué)卷(3) 題型:解答題

我們知道:直角三角形斜邊上的中線等于斜邊的一半,說明斜邊上的中線可把直角三角形分成兩個等腰三角形(圖①)。又比如,頂角為36°的等腰三角形也能分成兩個等腰三角形(圖②)。

1.試試看,你能把圖③、圖④、圖⑤中的三角形分成兩個等腰三角形嗎

2.△ABC中,有一內(nèi)角為36°,過某一頂點的直線將△ABC分成兩個等腰三角形,則滿足上述條件的不同形狀(相似的認為是同一形狀)的△ABC最多有5種,除了圖②、圖③中的兩種,還有三種,請你畫出來

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們知道:直角三角形斜邊上的中線等于斜邊的一半,說明斜邊上的中線可把直角三角形分成兩個等腰三角形(圖①).又比如,頂角為36°的等腰三角形也能分成兩個等腰三角形(圖②).
(1)試試看,你能把圖③、圖④、圖⑤中的三角形分成兩個等腰三角形嗎?
(2)△ABC中,有一內(nèi)角為36°,過某一頂點的直線將△ABC分成兩個等腰三角形,則滿足上述條件的不同形狀(相似的認為是同一形狀)的△ABC最多有5種,除了圖②、圖③中的兩種,還有三種,請你畫出來.

查看答案和解析>>

同步練習(xí)冊答案