【題目】某旅行社推出一條成本價位500元/人的省內(nèi)旅游線路,游客人數(shù)y(人/月)與旅游報價x(元/人)之間的關(guān)系為y=﹣x+1300,已知:旅游主管部門規(guī)定該旅游線路報價在800元/人~1200元/人之間.
(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報價的取值范圍;
(2)求經(jīng)營這條旅游線路每月所需要的最低成本;
(3)檔這條旅游線路的旅游報價為多少時,可獲得最大利潤?最大利潤是多少?
【答案】(1)取值范圍為1100元/人~1200元/人之間;(2)50000;(3)x=900時,w最大=160000
【解析】試題分析:(1)根據(jù)題意列不等式求解可;
(2)根據(jù)報價減去成本可得到函數(shù)的解析式,根據(jù)一次函數(shù)的圖像求解即可;
(3)根據(jù)利潤等于人次乘以價格即可得到函數(shù)的解析式,然后根據(jù)二次函數(shù)的最值求解即可.
試題解析:(1)∵由題意得時,即,
∴解得
即要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),該旅游線路報價的取值范圍為1100元/人~1200元/人之間;
(2),,∴
∵,∴當時,z最低,即;
(3)利潤
當時,.
【題型】解答題
【結(jié)束】
23
【題目】已知四邊形ABCD中,AB=AD,對角線AC平分∠DAB,過點C作CE⊥AB于點E,點F為AB上一點,且EF=EB,連接DF.
(1)求證:CD=CF;
(2)連接DF,交AC于點G,求證:△DGC∽△ADC;
(3)若點H為線段DG上一點,連接AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】試題分析:(1)求出∠DAC=∠BAC,根據(jù)全等三角形的判定得出△ADC≌△ABC,根據(jù)全等三角形的性質(zhì)得出CD=CB即可;
(2)根據(jù)全等三角形的性質(zhì)得出∠ADC=∠B,求出∠ADC+∠AFC=180°,∠DCF+∠DAF=180°,求出∠CDG=∠DAC,根據(jù)相似三角形的性質(zhì)得出即可;
(3)根據(jù)相似三角形的性質(zhì)得出∠DGC=∠ADC, ,求出∠HAG=∠AHG, ,根據(jù)相似三角形的判定得出△DGC∞△AGF,根據(jù)相似三角形的性質(zhì)得出即可.
試題解析:(1)證明:∵AC平分∠DAB,
∴∠DAC=∠BAC,
在△ADC和△ABC中
∴△ADC≌△ABC,
∴CD=CB,
∵CE⊥AB,EF=EB,
∴CF=CB,
∴CD=CF;
(2)∵△ADC≌△ABC,
∴∠ADC=∠B,
∵CF=CB,
∴∠CFB=∠B,
∴∠ADC=∠CFB,
∴∠ADC+∠AFC=180°,
∵四邊形AFCD的內(nèi)角和等于360°,
∴∠DCF+∠DAF=180°,
∵CD=CF,
∴∠CDG=∠CFD,
∵∠DCF+∠CDF+∠CFD=180°,
∴∠DAF=∠CDF+∠CFD=2∠CDG,
∵∠DAB=2∠DAC,
∴∠CDG=∠DAC,
∵∠DCG=∠ACD,
∴△DGC∽△ADC;
(3)∵△DGC∽△ADC,
∴∠DGC=∠ADC, ,
∵∠ADC=2∠HAG,AD=3,DC=2,
∴∠HAG=∠DGC, ,
∴∠HAG=∠AHG, ,
∴HG=AG,
∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,
∴△DGC∞△AGF,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中,AC=BC,∠A=30°,點D在AB邊上且∠ADC=45°.
(1)求∠BCD的度數(shù);
(2)將圖①中的△BCD繞點B順時針旋轉(zhuǎn),得到△BC′D′.當點D′恰好落在BC邊上時,如圖②所示,連接C′C并延長交AB于點E.
①求∠C′CB的度數(shù);
②求證:△C′BD′≌△CAE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2,寬為1的長方形CEFD拼在一起,構(gòu)成一個大的長方形ABEF,現(xiàn)將小長方形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α.
(1)當邊CD′恰好經(jīng)過EF的中點H時,求旋轉(zhuǎn)角α的大。
(2)如圖2,G為BC中點,且0°<α<90°,求證:GD′=E′D;
(3)小長方形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,△DCD′與△BCD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的大。蝗舨荒,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】裝修公司給小紅家的窗戶設計了如圖所示的裝修方案,上方布料窗眉(陰影部分)由兩個半徑相同的四分之一圓組成.
(1)分別用整式表示窗眉用布和窗戶透光的面積.(窗框的面積忽略不計).
(2)觀察(1)中的結(jié)果,它們是單項式還是多項式?次數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙二人在圓形跑道上從同一點A同時出發(fā),并按相反方向跑步,甲的速度為每秒5m,乙的速度為每秒8m,到他們第一次在A點處再度相遇時跑步就結(jié)束.則從他們開始出發(fā)(算第一次相遇)到結(jié)束(算最后一次相遇)共相遇了__________ 次.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y=2x+1與直線l2:y=mx+4相交于點P(1,b).
(1)求b,m的值;
(2)垂直于x軸的直線與直線l1,l2,分別交于點C,D,垂足為點E,設點E的坐標為(a,0)若線段CD長為2,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在ABCD中,對角線AC,BD交于點O,AB⊥AC,AB=1,BC=.
(1)求平行四邊形ABCD的面積S□ABCD;
(2)求對角線BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com