【題目】如圖,已知邊長(zhǎng)為4的正方形ABCD,PBC邊上一動(dòng)點(diǎn)(與B,C不重合),連結(jié)AP,作PEAP交∠BCD的外角平分線于E,設(shè)BPx,△PCE面積為y,則yx的函數(shù)關(guān)系式是_____

【答案】.

【解析】

過(guò)EEHBCH,證明BAP∽△HPE,求出EH=x,所以y=CPEH=4-xx=-x2+2x,

過(guò)EEHBCH,

∵四邊形ABCD是正方形,

∴∠DCH90°,

CE平分∠DCH

∴∠ECHDCH45°,

∵∠EHC90°,

∴∠ECH=∠CEH45°,

EHCH,

∵四邊形ABCD是正方形,APEP

∴∠B=∠H=∠APE90°,

∴∠BAP+APB90°,∠APB+EPH90°,

∴∠BAP=∠EPH,

∵∠B=∠EHP90°,

∴△BAP∽△HPE

,

EHx,

yCPEH4xx=﹣x2+2x

故答案為:y=﹣x2+2x

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了開展陽(yáng)光體育運(yùn)動(dòng),計(jì)劃購(gòu)買籃球、足球共60個(gè),已知每個(gè)籃球的價(jià)格為70元,每個(gè)足球的價(jià)格為80.

1)若購(gòu)買這兩類球的總金額為4600元,求籃球、足球各買了多少個(gè)?

2)若購(gòu)買籃球的總金額不超過(guò)購(gòu)買足球的總金額,求最多可購(gòu)買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A型、B型、C型三張矩形卡片的邊長(zhǎng)如圖所示,將三張矩形卡片分別放入三個(gè)信封中,三個(gè)信封的外表完全相同;

1)從這三個(gè)信封中隨機(jī)抽取1個(gè)信封,則抽中A型矩形的概率為______

2)先從這三個(gè)信封中隨機(jī)抽取1個(gè)信封(不放回),再?gòu)挠嘞碌膬蓚(gè)信封中隨機(jī)抽取1個(gè)信封,求事件兩次抽中的矩形卡片能拼成(無(wú)重疊無(wú)縫隙)一個(gè)新矩形發(fā)生的概率.(列表法或樹狀圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,連結(jié)BD、AC交于點(diǎn)O,過(guò)點(diǎn)O于點(diǎn)H,以點(diǎn)O為圓心,OH為半徑的半圓交AC于點(diǎn)M

①求證:DC是⊙O的切線.

②若,求圖中陰影部分的面積.

③在②的條件下,P是線段BD上的一動(dòng)點(diǎn),當(dāng)PD為何值時(shí),的值最小,并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃石市在創(chuàng)建國(guó)家級(jí)文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購(gòu)進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買A種樹木2棵,B種樹木5棵,共需600元;購(gòu)買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購(gòu)買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買樹木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a0)經(jīng)過(guò)點(diǎn)A(3,0),B(﹣1,0),C(0,﹣3).

(1)求該拋物線的解析式;

(2)若以點(diǎn)A為圓心的圓與直線BC相切于點(diǎn)M,求切點(diǎn)M的坐標(biāo);

(3)若點(diǎn)Qx軸上,點(diǎn)P在拋物線上,是否存在以點(diǎn)B,C,Q,P為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)、點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求的面積;

3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為宣傳66日世界海洋日,某校九年級(jí)舉行了主題為珍惜海洋資源,保護(hù)海洋生物多樣性的知識(shí)競(jìng)賽活動(dòng).為了解全年級(jí)500名學(xué)生此次競(jìng)賽成績(jī)(百分制)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績(jī),整理并繪制出如下不完整的統(tǒng)計(jì)表(表1)和統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)圖表信息解答以下問(wèn)題:

1)本次調(diào)查一共隨機(jī)抽取了   個(gè)參賽學(xué)生的成績(jī);

2)表1   ;

3)所抽取的參賽學(xué)生的成績(jī)的中位數(shù)落在的組別   ;

4)請(qǐng)你估計(jì),該校九年級(jí)競(jìng)賽成績(jī)達(dá)到80分以上(含80分)的學(xué)生約有   人.

1 知識(shí)競(jìng)賽成績(jī)分組統(tǒng)計(jì)表

組別

分?jǐn)?shù)/

頻數(shù)

A

a

B

10

C

14

D

18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x軸于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過(guò)A、B兩點(diǎn).

(1)求這個(gè)拋物線的解析式;

(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案