【題目】閱讀下列材料,完成相應的學習任務:如圖(1)在線段AB上找一點C,C把AB分為AC和BC兩條線段,其中AC>BC.若AC,BC,AB滿足關系AC2=BCAB.則點C叫做線段AB的黃金分割點,這時=≈0.618,人們把叫做黃金分割數(shù),我們可以根據(jù)圖(2)所示操作方法我到線段AB的黃金分割點,操作步驟和部分證明過程如下:
第一步,以AB為邊作正方形ABCD.
第二步,以AD為直徑作⊙F.
第三步,連接BF與⊙F交于點G.
第四步,連接DG并延長與AB交于點E,則E就是線段AB的黃金分割點.
證明:連接AG并延長,與BC交于點M.
∵AD為⊙F的直徑,
∴∠AGD=90°,
∵F為AD的中點,
∴DF=FG=AF,
∴∠3=∠4,∠5=∠6,
∵∠2+∠5=90°,∠5+∠4=90°,
∴∠2=∠4=∠3=∠1,
∵∠EBG=∠GBA,
∴△EBG∽△GBA,
∴=,
∴BG2=BEAB…
任務:
(1)請根據(jù)上面操作步驟與部分證明過程,將剩余的證明過程補充完整;(提示:證明BM=BG=AE)
(2)優(yōu)選法是一種具有廣泛應用價值的數(shù)學方法,優(yōu)選法中有一種0.618法應用了黃金分割數(shù).為優(yōu)選法的普及作出重要貢獻的我國數(shù)學家是 (填出下列選項的字母代號)
A.華羅庚
B.陳景潤
C.蘇步青
【答案】(1)見解析;(2)A
【解析】
(1)利用相全等三角形的判定和性質(zhì)、相似三角形的性質(zhì)以及平行線的性質(zhì)證明BM=BG=AE即可解決問題.
(2)為優(yōu)選法的普及作出重要貢獻的我國數(shù)學家是華羅庚.
(1)補充證明:∵∠2=∠4,∠ABM=∠DAE,AB=AD,
∴△ABM≌△DAE(ASA),
∴BM=AE,
∵AD∥BC,
∴∠7=∠5=∠6=∠8,
∴BM=BG=AE,
∴AE2=BEAB,
∴點E是線段AB的黃金分割點.
(2)優(yōu)選法是一種具有廣泛應用價值的數(shù)學方法,優(yōu)選法中有一種0.618法應用了黃金分割數(shù).為優(yōu)選法的普及作出重要貢獻的我國數(shù)學家是華羅庚.
故答案為A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,AB=4cm,若以點C為圓心,以2cm為半徑作⊙C,則AB與⊙C的位置關系是( )
A.相離B.相切C.相交D.相切或相交
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春節(jié)期間,支付寶“集五福”活動中的“集五福”?ü卜譃5種,分別為富強福、和諧福、友善福、愛國福、敬業(yè)福,從國家、社會和個人三個層面體現(xiàn)了社會主義核心價值觀的價值目標.
(1)小明一家人春節(jié)期間參與了支付寶“集五福”活動,小明和姐姐都缺一個“敬業(yè)福”,恰巧爸爸有一個可以送給他們其中一個人,兩個人各設計了一個游戲,獲勝者得到“敬業(yè)福”.
在一個不透明盒子里放入標號分別為1,2,3,4的四個小球,這些小球除了標號數(shù)字外都相同,將小球搖勻.
小明的游戲規(guī)則是:從盒子中隨機摸出一個小球,摸到標號數(shù)字為奇數(shù)小球,則判小明獲勝,否則,判姐姐獲勝.請判斷,此游戲規(guī)則對小明和姐姐公平嗎?說明理由.
姐姐的游戲規(guī)則是:小明從盒子中隨機摸出一個小球,記下標號數(shù)字后放回盒里,充分搖勻后,姐姐再從盒中隨機摸出一個小球,并記下標號數(shù)字.若兩次摸到小球的標號數(shù)字同為奇數(shù)或同為偶數(shù),則判小明獲勝,若兩次摸到小球的標號數(shù)字為一奇一偶,則判姐姐獲勝.請用列表法或畫樹狀圖的方法進行判斷此游戲規(guī)則對小明和姐姐是否公平.
(2)“五福”中體現(xiàn)了社會主義核心價值觀的價值目標的個人層面有哪些?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,且BC為⊙O的直徑,在劣弧上取一點D,使,將△ADC沿AD對折,得到△ADE,連接CE.
(1)求證:CE是⊙O的切線;
(2)若CEC D,劣弧的弧長為π,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示平面直角坐標系中,點A,C分別在x軸和y軸上,點B在第一象限,BC=BA,∠ABC=90°,反比例函數(shù)y=.(x>0)的圖象經(jīng)過點B,若OB=2,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017四川省達州市,第10題,3分)已知函數(shù)的圖象如圖所示,點P是y軸負半軸上一動點,過點P作y軸的垂線交圖象于A,B兩點,連接OA、OB.下列結論:
①若點M1(x1,y1),M2(x2,y2)在圖象上,且x1<x2<0,則y1<y2;
②當點P坐標為(0,﹣3)時,△AOB是等腰三角形;
③無論點P在什么位置,始終有S△AOB=7.5,AP=4BP;
④當點P移動到使∠AOB=90°時,點A的坐標為(,).
其中正確的結論個數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的過長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD、BC交于點F、E,連接AE.
(1)求證:AQ⊥DP;
(2)求證:AO2=ODOP;
(3)當BP=1時,求QO的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐—探究正方形旋轉(zhuǎn)中的數(shù)學問題
問題情境:已知正方形中,點在邊上,且.將正方形繞點順時針旋轉(zhuǎn)得到正方形(點,,,分別是點,,,的對應點).同學們通過小組合作,提出下列數(shù)學問題,請你解答.
特例分析:(1)“樂思”小組提出問題:如圖1,當點落在正方形的對角線上時,設線段與交于點.求證:四邊形是矩形;
(2)“善學”小組提出問題:如圖2,當線段經(jīng)過點時,猜想線段與滿足的數(shù)量關系,并說明理由;
深入探究:(3)請從下面,兩題中任選一題作答.我選擇題.
A.在圖2中連接和,請直接寫出的值.
B.“好問”小組提出問題:如圖3,在正方形繞點順時針旋轉(zhuǎn)的過程中,設直線交線段于點.連接,并過點作于點.請在圖3中補全圖形,并直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=90°,AC=8,BC=6,點P、Q分別在邊AC、射線CB上,且AP=CQ,過點P作PM⊥AB,垂足為點M,聯(lián)結PQ,以PM、PQ為鄰邊作平行四邊形PQNM,設AP=x,平行四邊形PQNM的面積為y.
(1)當平行四邊形PQNM為矩形時,求∠PQM的正切值;
(2)當點N在△ABC內(nèi),求y關于x的函數(shù)解析式,并寫出它的定義域;
(3)當過點P且平行于BC的直線經(jīng)過平行四邊形PQNM一邊的中點時,直接寫出x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com