精英家教網 > 初中數學 > 題目詳情
如圖,∠AOB=60°,P、Q兩點分別由O點沿OA、OB方向同時移動,移動速度分別為a米/秒和b米/秒,過P、Q分別作PM⊥OB于M,QN⊥OA于N,求:
(1)△POM與△QON的周長之比與面積之比;
(2)若在移動過程中,P與N重合時,求的值.

【答案】分析:(1)欲求△POM與△QON的周長之比與面積之比,可以證明△PMO∽△QNO得出;
(2)由于∠AOB=60°,通過三角函數的知識能夠求出的值.
解答:解:(1)設運動了t秒,則OP=at,OQ=bt
∵PM⊥OB,QN⊥OA
∴∠PMO=∠QNO=90°,∠O=∠O
∴△PMO∽△QNO(3分)

(6分)

(2)∵∠AOB=60°
∴OM=(9分)
由(1)得
(12分)
點評:本題考查了相似三角形的判定和性質,及三角函數的知識.相似三角形的周長比等于相似比,面積比是相似比的平方.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,∠AOB=60°,M,N是OB上的點,OM=4,MN=2
3

(1)設⊙O過點M、N,C、D分別是MN同側的圓上點和圓外點.求證:∠MCN>∠MDN;
(2)若P是OA上的動點,求∠MPN的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,∠AOB=60°,點M是射線OB上的點,OM=4,以點M為圓心,2cm為半徑作圓.若OA繞點O按逆時針方向旋轉,當OA和⊙M相切時,OA旋轉的角度是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,∠AOB=60°,P、Q兩點分別由O點沿OA、OB方向同時移動,移動速度分別為a米/秒和b米/精英家教網秒,過P、Q分別作PM⊥OB于M,QN⊥OA于N,求:
(1)△POM與△QON的周長之比與面積之比;
(2)若在移動過程中,P與N重合時,求
ab
的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•金華模擬)如圖,∠AOB=60°,點P在∠AOB的角平分線上,OP=10cm,點E、F是∠AOB兩邊OA,OB上的動點,當△PEF的周長最小時,點P到EF距離是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,∠AOB=60°,OC是∠AOB的平分線,則∠AOC=
30
30
度.

查看答案和解析>>

同步練習冊答案