如圖,PAB為割線且PA=AB,PO交⊙O于C,若OC=3,OP=5,則AB的長為(  )
A.
10
B.2
2
C.
6
D.
5

延長PO到E,延長線與圓O交于點E,連接EB,AC,

∵OC=3,OP=5,
∴OE=OC=3,
∴EP=OE+OP=3+5=8,CP=OP-OC=5-3=2,
設PA=AB=x,則BP=2x,
∵四邊形ACEB為圓O的內接四邊形,
∴∠ACP=∠E,又∠P=∠P,
∴△ACP△EBP,
CP
BP
=
AP
EP
,即
2
2x
=
x
8

解得:x=2
2
或x=-2
2
(舍去),
則AB=2
2

故選B
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:∠MAN=60°,點B在射線AM上,AB=4(如圖).P為直線AN上一動點,以BP為邊作等邊三角形BPQ(點B,P,Q按順時針排列),O是△BPQ的外心.
(1)當點P在射線AN上運動時,求證:點O在∠MAN的平分線上;
(2)當點P在射線AN上運動(點P與點A不重合)時,AO與BP交于點C,設AP=x,AC•AO=y,求y關于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)若點D在射線AN上,AD=2,圓I為△ABD的內切圓.當△BPQ的邊BP或BQ與圓I相切時,請直接寫出點A與點O的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,⊙P與x軸相切于坐標原點O,點A(0,2)是⊙P與y軸的交點,點B(-2
2
,0)在x軸上.連接BP交⊙P于點C,連接AC并延長交x軸于點D.
(1)求線段BC的長;
(2)求直線AC的關系式;
(3)當點B在x軸上移動時,是否存在點B,使△BOP相似于△AOD?若存在,求出符合條件的點B的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,兩個半圓中,長為4的弦,AB與直徑CD平行且與小半圓相切,那么圖中陰影部分的面積等于多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知⊙O的半徑為3cm,圓心O到直線l的距離是2m,則直線l與⊙O的位置關系是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖中,PA,PB是⊙O的切線,點A,B為切點,AC是⊙O的直徑,∠ACB=50°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,割線PCD交⊙O于C、D,∠PAC=∠PDA.
(1)求證:PA是⊙O的切線;
(2)若PA=6,CD=3PC,求PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB為⊙O的直徑,動點P沿AD方向從點A開始向點D以1厘米/秒的速度運動,動點Q沿CB方向從點C開始向點B以2厘米/秒的速度運動,點P、Q分別從A、C兩點同時出發(fā),當其中一點停止時,另一點也隨之停止運動.
(1)求⊙O的直徑;
(2)求四邊形PQCD的面積y關于P、Q運動時間t的函數(shù)關系式,并求當四邊形PQCD為等腰梯形時,四邊形PQCD的面積;
(3)是否存在某一時刻t,使直線PQ與⊙O相切?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,O是正方形ABCD的對角線BD上一點,⊙O與AB,BC都相切,點E,F(xiàn)分別在邊AD,DC上,現(xiàn)將△DEF沿EF對折,折痕EF與⊙O相切,此時點D恰好落在圓心O處,若DE=2,則正方形ABCD的邊長是______.

查看答案和解析>>

同步練習冊答案