【題目】如圖,E、F分別為正方形ABCD的邊AB、AD上的點,且AE=AF,聯(lián)接EF,將△AEF繞點A逆時針旋轉(zhuǎn)45°,使E落在E,F落在F,聯(lián)接BE并延長交DF于點G,如果AB=,AE=1,則DG=______.
【答案】
【解析】在Rt△AEF中,由勾股定理可得EF= ,把△AEF繞點A逆時針旋轉(zhuǎn)45°可得△AE1F1,可得E1F1=EF=,∠E1AM=45°,可得AM=F1M= ,因AB= ,可得DM= ,在Rt△DMF1中,由勾股定理可得DF1= ,利用SAS證明△ABE1≌△ADF1,根據(jù)全等三角形的性質(zhì)可得∠E1BA=∠ADF1,由此易證BG⊥DF1,因E1F1∥AB,根據(jù)平行線的性質(zhì)可得∠E1BA=∠GE1F1,所以∠ADF1=∠GE1F1,即可證明△GE1F1∽△MDF1,根據(jù)相似三角形的性質(zhì)可得 ,即 ,解得F1G= ,所以DG=DF1-F1G= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,已知南瓜種植面積的增長率是畝產(chǎn)量的增長率的2倍,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是平行四邊形ABCD邊AB上一點,且AB=3AP,連接CP,并延長CP、DA交于點E,則△AEP與△DEC的周長之比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標(biāo)為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當(dāng)△BCP的面積最大時,求點P的坐標(biāo)和△BCP的最大面積.
(3)當(dāng)△BCP的面積最大時,在拋物線上是否點Q(異于點P),使△BCQ的面積等于△BCP,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(m+3,m+1)在直角坐標(biāo)系的x軸上,則P點的坐標(biāo)為( )
A.(0,﹣2)
B.(2,0)
C.(0,2)
D.(0,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB為直角,AB=10,°,半徑為1的動圓Q的圓心從點C出發(fā),沿著CB方向以1個單位長度/秒的速度勻速運動,同時動點P從點B出發(fā),沿著BA方向也以1個單位長度/秒的速度勻速運動,設(shè)運動時間為t秒(0<t≤5)以P為圓心,PB長為半徑的⊙P與AB、BC的另一個交點分別為E、D,連結(jié)ED、EQ.
(1)判斷并證明ED與BC的位置關(guān)系,并求當(dāng)點Q與點D重合時t的值;
(2)當(dāng)⊙P和AC相交時,設(shè)CQ為,⊙P被AC 截得的弦長為,求關(guān)于的函數(shù); 并求當(dāng)⊙Q過點B時⊙P被AC截得的弦長;
(3)若⊙P與⊙Q相交,寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com