(1997•上海)用配方法把函數(shù)y=1-4x-2x2化成y=a(x+m)2+k的形式,并指出它的圖象的開口方向、頂點坐標和對稱軸.
分析:根據(jù)配方法整理,然后根據(jù)二次函數(shù)的性質解答即可.
解答:解:y=1-4x-2x2
=-2(x2+2x+1)+2+1,
=-2(x+1)2+3,
所以,∵a=-2<0,
∴它的圖象的開口方向向下,
頂點坐標為(-1,3),
對稱軸為直線x=-1.
點評:本題考查了二次函數(shù)的三種形式的轉化,二次函數(shù)的性質,是基礎題,熟練掌握配方法是以及二次函數(shù)的性質是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1997•上海)用科學記數(shù)法表示:0.001997=
1.997×10-3
1.997×10-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•上海)如圖,已知△ABC,以邊AB所在的直線為對稱軸,用直尺和圓規(guī)作一個三角形和它對稱.(不要求寫作法,但必須清楚保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•上海)已知直角坐標系內有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1,這條曲線是函數(shù)y=
12x
的圖象在第一象限內的一個分支,點P是這條曲線上任意一點,它的坐標是(a,b),由點P向x軸、y軸所作的垂線PM、PN(點M、N為垂足)分別與直線AB相交于點E和點F.
(1)設交點E和F都在線段AB上(如圖所示),分別求點E、點F的坐標(用a的代數(shù)式表示點E的坐標,用b的代數(shù)式表示點F的坐標,只須寫出答案,不要求寫出計算過程).
(2)求△OEF的面積(結果用a、b的代數(shù)式表示).
(3)△AOF與△BOE是否一定相似?如果一定相似,請予以證明;如果不一定相似或者一定不相似,請簡要說明理由.
(4)當點P在曲線上移動時,△OEF隨之變動,指出在△OEF的三個內角中,大小始終保持不變的那個角和它的大小,并證明你的結論.

查看答案和解析>>

同步練習冊答案