如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30°,∠APB=60°.
(1)求證:PB是⊙O的切線;
(2)若⊙O的半徑為2,求弦AB及PA,PB的長.

【答案】分析:(1)連接OB,證PB⊥OB.根據(jù)四邊形的內(nèi)角和為360°,結(jié)合已知條件可得∠OBP=90°得證.
(2)連接OP,根據(jù)切線長定理得直角三角形,運用三角函數(shù)求解.
解答:(1)證明:連接OB.
∵OA=OB,
∴∠OBA=∠BAC=30°.                (1分)
∴∠AOB=180°-30°-30°=120°.              (2分)
∵PA切⊙O于點A,
∴OA⊥PA,
∴∠OAP=90°.
∵四邊形的內(nèi)角和為360°,
∴∠OBP=360°-90°-60°-120°=90°.         (3分)
∴OB⊥PB.
又∵點B是⊙O上的一點,
∴PB是⊙O的切線.                            (4分)

(2)解:連接OP;
∵PA、PB是⊙O的切線,
∴PA=PB,∠OPA=∠OPB=∠APB=30°.           (5分)
在Rt△OAP中,∠OAP=90°,∠OPA=30°,
∴OP=2OA=2×2=4,(6分)
∴PA=.        (7分)
∵PA=PB,∠APB=60°,
∴PA=PB=AB=2.                             (8分)
(此題解法多樣,請評卷老師按解題步驟給分)
點評:此題考查了切線的判定、切線長定理、三角函數(shù)等知識點.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是一個邊長為2的等邊三角形,D、E都在直線BC上,并且∠DAE=120°
(1)設BD=x,CE=y,求y與x直間的函數(shù)關系式;
(2)在上題中一共有幾對相似三角形,分別指出來(不必證明)
(3)改變原題的條件為AB=AC=2,∠BAC=β,∠DAE=α,α、β之間要滿足什么樣的關系,能使(1)中y與x的關系式仍然成立?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在“汶川”地震后人們積極開展自救.如圖,這是小明家搭建的簡易帳篷,小明準備從帳篷豎直的支撐竿AB的頂部A向地面拉一根繩子AC固定帳篷.若地面固定點C到帳篷支撐竿底部B的距離是4米,∠ACB=30°,求支撐竿AB的長和繩子AC的長.(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某市的跨江斜拉大橋建成通車,如圖,BC是水平橋面,AD是豎直橋墩,按工程設計的要求,斜拉的鋼線AB、AC應相等,請你用學過的知識來檢驗AB、AC的長度是相等的,寫出你的檢驗方法步驟,并簡要說明理由.(檢驗工具為刻度尺、測角儀;檢驗時,人只能站在橋面上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖(1),在水平地面點A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點為B.有人在直線AB上點C(靠點B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi).已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計).
(1)在如圖(2)建立的坐標系下,求網(wǎng)球飛行路線的拋物線解析式;
(2)若豎直擺放5個圓柱形桶時,則網(wǎng)球能落入桶內(nèi)嗎?說明理由;
(3)若要使網(wǎng)球能落入桶內(nèi),求豎直擺放的圓柱形桶的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2008年江蘇省南通市如東縣馬塘中學中考數(shù)學模擬試卷(解析版) 題型:解答題

在“汶川”地震后人們積極開展自救.如圖,這是小明家搭建的簡易帳篷,小明準備從帳篷豎直的支撐竿AB的頂部A向地面拉一根繩子AC固定帳篷.若地面固定點C到帳篷支撐竿底部B的距離是4米,∠ACB=30°,求支撐竿AB的長和繩子AC的長.(結(jié)果保留根號).

查看答案和解析>>

同步練習冊答案