【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是△ABC內(nèi)一點(diǎn),AD=BD,且AD⊥BD,連接CD.過點(diǎn)C作CE⊥BC交AD的延長線于點(diǎn) E,連接BE.過點(diǎn)D作DF⊥CD交BC于點(diǎn)F.
(1)若BD=DE=,CE=,求BC的長;
(2)若BD=DE,求證:BF=CF.
【答案】(1)BC=2;(2)證明見解析.
【解析】試題分析:(1)利用勾股定理求出BE的長,進(jìn)而再次利用勾股定理求出BC的長;
(2)連接AF,首先利用ASA證明出△BDF≌△EDC,得到,進(jìn)而得到∠ADF=∠BDC,再次利用SAS證出△ADF≌△BDC,結(jié)合題干條件得到AF⊥BC,利用等腰三角形的性質(zhì)得到結(jié)論.
試題解析:(1)∵BD⊥AD,點(diǎn)E在AD的延長線上,
∴
∵
∴
∵BC⊥CE,
∴
∴
(2)連接AF,
∵CD⊥BD,DF⊥CD,
∴
∴∠BDF=∠CDE,
∵CE⊥BC,
∴
∴∠DBC=∠CED,
在△BDF和△EDC中,
∵
∴△BDF≌△EDC(ASA),
∴DF=CD,
∴
∵∠ADB=∠CDF,
∴∠ADB+∠BDF=∠CDF+∠BDF,
∴∠ADF=∠BDC,
在△ADF和△BDC中,
∵
∴△ADF≌△BDC(SAS),
∴∠AFD=∠BCD,
∴
∴
∴AF⊥BC,
∴AB=AC,
∴BF=CF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將兩條寬度相同的紙條交叉重疊放在一起,則重疊部分ABCD是________形,若紙條寬DE=4 cm,CE=3 cm,則四邊形ABCD的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l : 經(jīng)過定點(diǎn)P,交x、y軸于A、B兩點(diǎn).
(1)如圖1,直接寫出點(diǎn)P的坐標(biāo)__________________;
(2)如圖2,當(dāng)k=—1時,點(diǎn)C為y軸負(fù)半軸上一動點(diǎn),過點(diǎn)P作PD⊥PC交x軸于點(diǎn)D,M、N分別為CD、OA的中點(diǎn),求的值;
(3)如圖3,E、F兩點(diǎn)在射線OP上移動,EF=,點(diǎn)E向上移動2個單位得到點(diǎn)G,點(diǎn)E橫坐標(biāo)為 t(t>0),在x軸負(fù)半軸上有點(diǎn)H(—2t,0),FG與HE相交于Q點(diǎn),求證:點(diǎn)Q在某條直線上運(yùn)動,并求此直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面上點(diǎn),,,(每三點(diǎn)都不在一條直線上).
(1)經(jīng)過這四點(diǎn)最多能確定 條直線.
(2)如圖這四點(diǎn)表示公園四個地方,如果點(diǎn),在公園里湖對岸兩處,,在湖面上,要從到筑橋,從節(jié)省材料的角度考慮,應(yīng)選擇圖中兩條路中的哪一條?如果有人想在橋上較長時間觀賞湖面風(fēng)光,應(yīng)選擇哪一條?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為12cm,點(diǎn)B,D之間的距離為16m,則線段AB的長為
A. B. 10cmC. 20cmD. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的和距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈,建立適當(dāng)坐標(biāo)系.
(1)求拋物線的解析式.
(2)求兩盞景觀燈之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將若干個奇數(shù)按每行8個數(shù)排成如圖的形式:
小軍畫了一方框框住了其中的9個數(shù).
(1)如圖中方框內(nèi)9個數(shù)之和是 ;
(2)若小軍畫的方框內(nèi)9個數(shù)之和等于333,則這個方框內(nèi)左下角的那個數(shù)為_________;
(3)試說明:方框內(nèi)的9個數(shù)之和總是9的倍數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A、B兩點(diǎn)分別對應(yīng)有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|,利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示2和10兩點(diǎn)之間的距離是_______.
(2)數(shù)軸上一個點(diǎn)到表示2的點(diǎn)的距離為5.2,這個點(diǎn)表示的數(shù)為______.
(3)若x表示一個數(shù),數(shù)軸上表示x和﹣5的兩點(diǎn)之間的距離是____;(用含x的式子表示)
(4)若x表示一個數(shù),|x+1|+|x﹣2|的最小值是______,相應(yīng)的x的取值范圍_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,同心圓中,大圓O的弦AB與小圓O切于點(diǎn)P,且AB=16,則圓環(huán)面積為________;
(2)如圖2,同心圓中,大圓O的弦AB與小圓O相交,其中一個交點(diǎn)為點(diǎn)P,且AP=2,PB=8,則圓環(huán)面積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com