【題目】如圖,拋物線軸于,兩點(diǎn),交軸于點(diǎn),連接,點(diǎn)為拋物線上一動(dòng)點(diǎn).

1)求拋物線的解析式;

2)當(dāng)點(diǎn)到直線的距離為時(shí),求點(diǎn)的橫坐標(biāo);

3)當(dāng)的面積相等時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).

【答案】1;(2)點(diǎn)的橫坐標(biāo)為;(3

【解析】

1)把,代入解析式即可求解; 2)過P,軸交ABD,構(gòu)建直角三角形,利用三角函數(shù)建立PD的關(guān)系即可求解; 3ACPABC的面積相等,過的平行線與拋物線的交點(diǎn)符合題意,再把向上平移兩平行線間的距離得另兩個(gè)交點(diǎn)也符合題意,聯(lián)立兩個(gè)解析式即可求解.

解:(1)把,代入

解得:

所以,拋物線的解析式為:

2)過點(diǎn),過點(diǎn)軸交直線

,

,

,

直線的解析式為:

設(shè)點(diǎn)

,

,

當(dāng)時(shí),解得:,

當(dāng),方程無(wú)解.

故點(diǎn)的橫坐標(biāo)為

3)如圖,

B,則

,,

所以設(shè) ,把代入得,,

所以

所以 解得:,

所以

因?yàn)?/span> ,所以,又,

所以,把向上平移4個(gè)單位長(zhǎng)度得:,

所以 ,解得: ,

所以

所以P的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工人師傅用一塊長(zhǎng)為10dm,寬為6dm的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))

(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長(zhǎng)方體底面面積為12dm2時(shí),裁掉的正方形邊長(zhǎng)多大?

(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長(zhǎng)多大時(shí),總費(fèi)用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙O的半徑為1,點(diǎn)Ax軸的正半軸上,B為⊙O上一點(diǎn),過點(diǎn)A、B的直線與y軸交于點(diǎn)C,且OA2ABAC

1)求證:直線AB是⊙O的切線;

2)若AB,求直線AB對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx1(a0)x軸于AB(1,0)兩點(diǎn),交y軸于點(diǎn)C,一次函數(shù)yx+3的圖象交坐標(biāo)軸于A,D兩點(diǎn),E為直線AD上一點(diǎn),作EFx軸,交拋物線于點(diǎn)F

(1)求拋物線的解析式;

(2)若點(diǎn)F位于直線AD的下方,請(qǐng)問線段EF是否有最大值?若有,求出最大值并求出點(diǎn)E的坐標(biāo);若沒有,請(qǐng)說(shuō)明理由;

(3)在平面直角坐標(biāo)系內(nèi)存在點(diǎn)G,使得G,ED,C為頂點(diǎn)的四邊形為菱形,請(qǐng)直接寫出點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,,點(diǎn)是弧上的任一點(diǎn),過點(diǎn)的切線交于點(diǎn).連接

1)求證:

2)填空:①當(dāng)_____時(shí),四邊形是正方形;

②當(dāng)_____時(shí),四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以點(diǎn)A為中心,把△ABC逆時(shí)針旋轉(zhuǎn)120°,得到△AB'C′(點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B′、C′),連接BB',若AC'BB',則∠CAB'的度數(shù)為(  )

A.45°B.60°C.70°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(4n)、B(3,4)是一次函數(shù)y1kxb的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn),過點(diǎn)D(t,0)0t<3)作x軸的垂線,分別交雙曲線和直線y1kxbPQ兩點(diǎn)

(1) 直接寫出反比例函數(shù)和一次函數(shù)的解析式

(2) 當(dāng)t為何值時(shí),SBPQSAPQ

(3) 以PQ為邊在直線PQ的右側(cè)作正方形PQMN,試說(shuō)明:邊QM與雙曲線x>0)始終有交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年“519(我要走)全國(guó)徒步日(江夏站)”暨第六屆“環(huán)江夏”徒步大會(huì)519日在美麗的花山腳下降重舉行.組委會(huì)(活動(dòng)主辦方)為了獎(jiǎng)勵(lì)活動(dòng)中取得了好成績(jī)的參賽選手,計(jì)劃購(gòu)買共100件的甲、乙兩種紀(jì)念品發(fā)放.其中甲種紀(jì)念品每件售價(jià)120元,乙種紀(jì)念品每件售價(jià)80.

1)如果購(gòu)買甲、乙兩種紀(jì)念品一共花費(fèi)了9600元,求購(gòu)買甲、乙兩種紀(jì)念品各是多少件?

2)設(shè)購(gòu)買甲種紀(jì)念品件,如果購(gòu)買乙種紀(jì)念品的件數(shù)不超過甲種紀(jì)念品的數(shù)量的2倍,并且總費(fèi)用不超過9400.問組委會(huì)購(gòu)買甲、乙兩種紀(jì)念品共有幾種方案?哪一種方案所需總費(fèi)用最少?最少總費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠ACB=90°DAB邊上一點(diǎn),以BD為直徑的⊙O與邊AC有公共點(diǎn)E,連結(jié)DE并延長(zhǎng),與BC的延長(zhǎng)線交于點(diǎn)F BD=BF

1)求證:AC⊙O的切線;

2)若∠F=60°,BF=8,求CF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案